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CONCOMITANT TARGETING OF THE MTOR/MAPK PATHWAYS: NOVEL 

THERAPEUTIC STRATEGY IN SUBSETS OF NON-SMALL CELL LUNG CANCER 

 

Dennis Ruder, B.S. 

Advisory Professor: Ignacio I. Wistuba, M.D. 

 

Over the last decade, a paradigm-shift in lung cancer therapy has evolved into 

targeted-driven medicinal approaches. However, patients frequently relapse and 

develop resistance to available therapies. Herein, we utilized genomic mutation data 

from advanced chemorefractory non-small cell lung cancer (NSCLC) patients enrolled 

in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer 

Elimination (BATTLE-2) clinical trial to characterize novel actionable genomic 

alterations potentially of clinical relevance. We identified RICTOR alterations 

(mutations, amplifications) in 17% of lung adenocarcinomas and found RICTOR 

expression correlates to worse overall survival. There was enrichment of MAPK 

pathway genetic aberrations in key oncogenes (e.g. KRAS, BRAF, NF1) associated 

with RICTOR altered cases, underscoring that RICTOR could serve as an important 

co-oncogenic driver in specific molecular settings. Moreover, we utilized a panel of 

RICTOR amplified NSCLC cell lines and found that RICTOR genetic blockade 

impaired malignant properties seen by reduced effects on cell survival and 

tumorigenicity potential. We uncovered a compensatory activation of the MAPK 

signaling pathway following RICTOR knockdown specifically in KRAS co-mutational 

settings, exposing a unique therapeutic vulnerability. Our in vitro and in vivo data 
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testing concomitant pharmacologic inhibition of both pathways (PI3K/AKT/mTOR and 

MAPK) via AZD2014 (mTORC1/2 inhibitor) and selumetinib (MEK1/2) resulted in 

synergistic responses of antitumor effects. Given the large population of patients 

affected by NSCLC, our study provides a treatment rationale for a specific subset of 

patients who may benefit from genomic stratification based on RICTOR/KRAS 

alterations, further underscoring the need for proper patient selection to gain optimal 

therapeutic response. 
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Chapter 1 

Introduction 

1.1 Lung Cancer Overview 

Lung cancer continues to affect the lives of more than 1.6 million new patients   

annually and remains a major global health problem. It is estimated to affect more 

than 224,000 people and lead to over 159,000 new deaths in the US each year (1). 

Despite advancements in detection methods and standard of care, over a third of 

patients that are diagnosed with lung cancer present at late stage with metastatic 

disease, resulting in a dismal 5-year survival rate of less than 5% which has remained 

stagnant over the past few decades (2). What was once considered a single disease 

entity, lung tumors exist as diverse subtypes with unique pathologies. The two major 

forms of lung cancer are non-small cell lung cancer (NSCLC) (accounts for 

approximately 85% of all lung tumors) and small-cell lung cancer (SCLC) (about 

15%). Specifically, NSCLC can be further subdivided into three major histotypes: lung 

adenocarcinoma (50%), squamous-cell carcinoma (30%), and large-cell lung cancer 

(15%) (Figure 1) (3).   

1.2 Paradigm Shift in Therapy and Molecular Characterization of NSCLC 

It is well recognized that heterogeneity amongst the molecular architecture of 

tumors is responsible for diverse clinical outcomes and responses even in patients 

with similar clinical staging and histologic characteristics. This is due to our increased 

understanding that NSCLC is a disease comprised of diverse clinical, histological, and 

genetically distinct subtypes.  
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Figure 1. Non-small cell lung cancer (NSCLC) frequency based on histology. 

 

With significant advancements in genomic sequencing technologies, treatment 

strategies and management of NSCLC, particularly in lung adenocarcinomas, are 

heavily based on screening tumors for an array of biomarkers that are of predicative 

and/or prognostic value to help oncologists assign patients that would be most 

sensitive to specific targeted therapies (4). A multitude of oncogenic driver mutations 

that feed into key signaling pathways have now been elucidated that lead to 

tumorigenesis and tumor progression (Figure 2) (5). Specifically, significant effort in 

the last decade had centered upon developing targeted agents against mutations of 

the epidermal growth factor receptor (EGFR, ~17% mutations) and in anaplastic 

lymphoma kinase (ALK) fusions/rearrangements (~7%), with much success attributed 

to examples such as EGFR tyrosine kinase inhibitors (TKIs) and crizotinib, 

respectively. In both subgroups, the response rates in patients properly stratified to 
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these targeting agents were as high as 70% in crucial phase 3 clinical trials (6, 7). 

Identification of such driver mutations and the responses seen in patients 

appropriately stratified serve as classic examples for the impetus of rational design of 

new and improved targeted agents that hit other key oncogenes in NSCLC. Such 

alterations are often found in receptors or protein kinases and can activate a complex 

cascade of oncogenic signaling paths such as the mitogen-activated protein kinase 

(MAPK) cascade and the phosphoinositide 3-kinase (PI3K)-PKB (AKT) pathway. The 

frequency of other genomic alterations that occur in lung adenocarcinomas include 

KRAS (25%), NF1 (8.3%), MET (3%), ROS1 (2%), BRAF (2%), RET (2%), and others 

(Figure 2) (5, 8). Ultimately, these mutant onco-drivers stimulate such pathways that 

lead to uncontrolled cancer cell growth, proliferation and pro-survival transcriptional 

reprogramming (9-12). However, approximately 25-30% of lung adenocarcinomas do 

not have known, targetable mutations, and therefore these patients are treated with 

standard cytotoxic chemotherapies with limited success. Moreover, although targeted 

therapies against discovered alterations lead to remarkable initial responses, the 

inevitable emergence of drug resistance still occurs and patients ultimately relapse. 

Mechanisms of resistance can occur either through the acquisition of secondary 

mutations in the targeted kinase that can potentially negate the drug binding affinity, 

or by compensating via alternate bypass signaling mechanisms, though other 

resistance mechanisms are possible (13, 14). Therefore, it is imperative to take into 

account the molecular underpinnings of each patient’s tumor and utilize a 

personalized medicine approach to identify novel actionable targets and therapeutic 

strategies tailored to that individual.   
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Figure 2. Frequency of molecular aberrations in various driver oncogenes in 

lung adenocarcinomas and current available drugs against these oncogenic 

proteins. These frequencies are a combination of data from the Lung Cancer 

Mutation Consortium and frequencies listed in Shea et al. (15). Shown in the boxes 

are the available drugs in addition to their developmental phase. EGFR, epidermal 

growth factor receptor; ALK, anaplastic lymphoma receptor tyrosine kinase; MET, 

mesenchymal-to-epithelial transition factor; HER2, erb-b2 receptor tyrosine kinase 2; 

ROS1, ROS proto-oncogene 1, receptor tyrosine kinase; BRAF, B-Raf proto-

oncogene, serine/threonine kinase; RET, ret proto-oncogene; NTRK1, neurotrophic 
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tyrosine kinase receptor type 1; PIK3A, phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha; MEK1, mitogen-activate protein kinase kinase 1; 

KRAS, Kirsten rat sarcoma viral oncogene homolog. 

Reprinted with permission from: Tsao AS et al. Scientific Advances in Lung Cancer 

2015. J Thorac Oncol. 2016;11(5):613-38. (5) License # 3957960028670 

  



www.manaraa.com

6 
 

1.3 The PI3K/AKT/mTOR signaling pathway 

The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/AKT)-

mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) pathway is one of the 

most frequently deregulated signaling pathways in cancer and heavily enhances 

tumorigenic potential with its regulatory processes involving cellular growth, 

proliferation, survival, migration/invasion, and angiogenesis (16-18) (Figure 3). Under 

physiological condition, this intricate pathway is stimulated via ligand activation of 

receptor tyrosine kinases (RTKs) such as EGFR, ErbB3 IGF1-R, resulting in 

phosphorylation of tyrosine residues on the intracellular portion of the receptors (16, 

19). This results in the direct recruitment of PI3K to the membrane of the cell where 

conversion of the second messenger phosphatidylinositol-4,5-bisphosphate (PIP2) to 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) can occur (20). PIP3 is then able to 

recruit 3-phosphoinositide dependent protein kinase-1 (PDK1) and the 

serine/threonine kinase AKT, via their pleckstrin homology (PH) domains, to the 

plasma membrane. PDK1 then phosphorylates AKT on Thr308 in the catalytic domain 

and the mammalian target of rapamycin complex 2 (mTORC2) serves to fully activate 

AKT on Ser473 in the hydrophobic motif (21). Active AKT mediates numerous cellular 

processes including survival, proliferation, apoptosis, migration and invasion via 

regulation of downstream effectors spanning multiple pathways (22-27). Typically, 

AKT can then lead to phosphorylation and inactivation of the GTPase-activating 

proteins (GAPs) tuberous sclerosis 1 and 2 (TSC1/TSC2), resulting in the 

accumulation of GTP-bound Ras homologue enriched in brain (RHEB) ultimately 

leading to activation of mammalian target of rapamycin complex 1 (mTORC1). Once 

activated, mTORC1 can directly regulate cellular processes involved in metabolism 
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and biosynthesis. Specifically, mTORC1 phosphorylates p70 S6 kinase and the 

translation repressor 4E-binding protein 1 (4EBP1). Phosphorylation of 4EBP1 inhibits 

the binding ability to eIF4E and initiates cap-dependent translation (28, 29). Similarly, 

S6K activation aids in the cap-dependent translation mechanism and also promotes 

S6 ribosomal protein (S6RP) phosphorylation. Collectively, this pathway converges on 

important cellular mechanisms resulting in increased protein translation, ribosome 

biogenesis and inhibition of autophagy (30-32).  

Moreover, key components of the mTOR pathway are the two structurally and 

functionally distinct mTOR complexes. The essential mTORC1 subunits are the 

Ser/Thr kinase mTOR, the regulatory-associated protein of mTOR (RAPTOR) which 

serves as a scaffolding unit, mammalian lethal with Sec13 protein 8 (mLST8), proline-

rich AKT substrate 40 kDa (PRAS40), and DEP-domain-containing mTOR-interacting 

protein (DEPTOR) (33, 34). The functional and regulatory mechanisms of mTORC1 

have been characterized extensively since the discovery of rapamycin, an antifungal 

metabolite produced from the bacterium Streptomyces hygroscopicus, which inhibits 

mTOR and was later discovered to exhibit anti-proliferative and immunosuppressive 

effects (35). mTORC1 activity can be modulated by amino acid availability, nutrient 

levels, cellular energy status, and growth factors and ultimately coordinates regulatory 

signaling for translation and ribosome biogenesis (as described above). Moreover, 

mTORC1 is directly linked to the regulation of autophagy, and this link has been 

extensively studied due to important implications to cancer biology and treatment (36, 

37). The process of autophagy can be either pro-oncogenic, acting as a survival 

mechanism to aid in growth advantage during stressful cellular conditions, or tumor 
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suppressive in function by preventing the buildup of damaged molecules such as 

organelles and proteins (37-40).  

mTOR can function as part of a second complex, mTORC2, which contains 

some overlapping and distinct protein subunits, namely rapamycin-insensitive 

companion of mTOR (RICTOR), mammalian stress-activated protein kinase 

interacting protein (mSIN1), protein observed with Rictor-1 (PROTOR-1), DEPTOR, 

and mLST8 (36). Relative to mTORC1, the biology of regulation and functionality of 

mTORC2 is still in its infancy, although there is increased appreciation of the 

importance of this complex. Further, although it is established that activation of 

mTORC2 can be mediated by growth factors and PI3K signaling, the precise 

mechanism is poorly understood. One of the major roles elucidated for mTORC2 is 

the phosphorylation and full activation of AKT on Ser473 (21, 41).  It can also 

phosphorylate and activate several other protein A/G/C (AGC) kinase family members 

such as serum glucocorticoid-induced kinase (SGK) and protein kinase C (PKC) 

isoforms, regulating cytoskeletal reorganization, cell survival, and lipid metabolism 

(41-43). 
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Figure 3. The mTOR signaling pathway. Red lines indicate the different 

mechanisms of mTOR activation. Abbreviations: AMPK, AMP-activated kinase; 

deptor, DEP-domain-containing mTOR interacting protein; 4E-BP1, eIF4E-binding 

protein 1; eIF, eukaryotic initiation factors; ERK1/2, extra-cellular regulated kinase 1/2; 

FKBP12, FK506 binding protein 12; IRS, Insulin receptor substrates; mLST8, 

mammalian lethal with Sec13 protein 8; mTORC, mammalian target of rapamycin 

complex; NDRG1, N-Myc downstream regulated gene-1; PDK1, phosphoinositide-

dependent kinase 1; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 

bisphosphate; PIP3, phosphatidylinositol triphosphate; PRAS40, proline-rich Akt1 

substrate 1; protor, protein observed with Rictor-1/Proline rich Akt substrate of 40kDa; 

P70S6K1, p70 S6 kinase 1; Rheb, Ras homolog enriched in brain; mSin1, stress 



www.manaraa.com

10 
 

activated protein kinase interaction protein 1; SGK, serum and glucocorticoid protein 

kinase; TSC, tuberous sclerosis complex; TKR, tyrosine kinase receptor.  

Reprinted with permission from: Chapuis N. et al. Perspectives on inhibiting mTOR as 

a future treatment strategy for hematological malignancies. Leukemia. 2010;24 

(10):1686-99 (44). License # 3960460046414 
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1.4 The RAS/RAF/MEK/ERK (MAPK) signaling pathway 

The mitogen-activated protein kinase (MAPK) signaling pathway is a highly 

conserved family of kinases and is deregulated in about one-third of all human 

cancers (45).  An overview of this signaling pathway is illustrated in Figure 4 (46). This 

pathway is primarily induced by cell surface receptors such as RTKs. Dimerization of 

these receptors following ligand binding activates the receptors and 

autophosphorylation of tyrosine residues occurs in the intracellular domain. 

Phosphorylation of these residues acts as docking sites for various proteins 

containing Src homology 2 (SH2) or phosphotyrosine-binding (PTB) domains (e.g. 

Grb2, growth factor receptor-bound protein 2). Grb2, serving as an adaptor molecule, 

can then recruit son of sevenless (SOS), a GTPase exchange factor (RasGEF), to 

localize to the cell membrane. Inactive Ras-GDP is largely associated with the plasma 

membrane, but following activation and catalytic transformation to Ras-GTP by SOS, 

RAS is able to recruit the RAF family of kinases (A-RAF, B-RAF, C-RAF) to the 

membrane and activate them. Subsequent activation loop phosphorylations occur in 

which RAF activates downstream MEK1/2, and MEK1/2 ultimately activates ERK1/2 

at threonine and tyrosine residues, leading to a cascade of reactions regulating cell 

survival, proliferation, and motility. The main downstream targets elucidated of 

MEK1/2 are ERK1/2, while ERK1/2 has numerous downstream effectors (47). 
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Figure 4. The RAS-RAF-MEK-ERK signaling pathway. The classical MAPK 

pathway is activated in human tumors by several mechanisms including the binding of 

ligand to receptor tyrosine kinases (RTK), mutational activation of an RTK, by loss of 

the tumor suppressor NF1, or by mutations in RAS, BRAF, and MEK1. 

Phosphorylation and thus activation of ERK regulates transcription of target genes 

that promote cell cycle progression and tumor survival. The ERK pathway contains a 

classical feedback loop in which the expression of feedback elements such as SPRY 

and DUSP family proteins are regulated by the level of ERK activity. Loss of 

expression of SPRY and DUSP family members due to promoter methylation or 
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deletion is thus permissive for persistently elevated pathway output. In the case of 

tumors with V600EBRAF expression, pathway output is enhanced by impaired 

upstream feedback regulation.  

Reprinted with permission from: Pratilas CA, Solit DB. Targeting the mitogen-

activated protein kinase pathway: physiological feedback and drug response. Clinical 

cancer research: an official journal of the American Association for Cancer Research. 

2010;16(13):3329-34. (46) License # 3960600731382 
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1.5 Cross-talk between PI3K/mTOR and MAPK Pathways 

Traditional views of major signaling networks such as the PI3K/AKT/mTOR and 

RAS/RAF/MEK/ERK (MAPK) pathways arrange these mechanisms as linear and 

independent pathways that determine cellular fate. However, numerous reports to 

date have described that these parallel pathways are very intricate and in fact there 

are multiple nodes of cross-talk, resulting in cross-activation, inhibition, and 

convergence of pathways on effector targets (48, 49). This is evidenced by reports 

suggesting that approximately 802 active proteins exist that are involved in PI3K-

mediated signaling and over 2,000 connections exist that relate to the MAPK pathway 

family kinases (50, 51). Thus, the opportunity for cross-regulatory mechanisms 

amongst these interactomes to occur is not surprising and both of these major 

oncogenic pathways affect each other at various phases of signal transduction, 

depending on the cellular context and need. A summary of major cross-talk 

mechanisms that have been reported are highlighted in Figure 5 (49). 

In both pathways, there are various kinases that have limited specificity of 

known substrates (e.g. mTORC1, RAF, MEK) and others that activate various 

members of their respective pathways on top of a multitude of other effector targets 

(e.g. S6K, ERK, AKT, RSK) (49). The integration of the PI3K/mTOR and MAPK 

pathways therefore mostly occurs through the latter kinases noted. Cross-inhibition of 

these pathways has been elucidated following studies utilizing chemical methods of 

blockade, wherein one pathway is blocked inducing a release mechanism of the basal 

cross-inhibitory effects leading to activation of the alternate pathway. For instance, 

inhibitors of MEK have been shown to increase epidermal growth factor (EGF)-
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mediated activation of AKT through the recruitment of PI3K to the EGFR receptor (52, 

53).  

Moreover, a cross-inhibitory mechanism between RAF and AKT has been 

proposed that is induced by levels of IGF1 stimulation (54). Studies reported that the 

negative regulations of downstream ERK signaling by AKT occur through AKT’s 

inhibition on phosphorylation sites in the upstream RAF N-terminus domain, 

specifically on the Ser364/259 residues (55-57). These conserved sites are 

recognized by 14-3-3 dimers which can immobilize the auto-inhibited RAF in the 

cytosolic region away from its upstream and downstream effectors RAS and MEK, 

respectively (58).  

Cross-activation can also occur between both pathways. The MAPK pathway 

can activate the PI3K/mTOR pathway through direct regulation of PI3K, mTORC1, 

and TSC2. Activated RAS, when bound to GTP, can allosterically activate PI3K 

through direct binding (59-61). Moreover, constitutive activation from a mutant RAS, 

EGF stimulation, or phorbol esters can lead to hyperactive MAPK signaling, resulting 

in ERK and its effector ribosomal s6 kinase (RSK) to stimulate mTORC1 activity by 

inhibiting the GTPase-activating protein (GAP) function of the TSC1/2 complex (62). 

Additionally, pathway convergence can occur via multiple mechanisms signaled by 

S6K, AKT, ERK, and RSK since these key proteins share similar substrates and 

sometimes activate the same target simultaneously to fulfill specific processes such 

as cell survival, proliferation, motility and metabolism. Prime examples include the 

regulation of the forkhead box O (FOXO) and glycogen synthase kinase 3 (GSK3) 

(49). The FOXO family of proteins control expression of molecules involved in the 

apoptotic cascade and key cell cycle regulators, with the primary role of inhibiting cell 
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survival and proliferation. ERK, AKT, and SGK can all phosphorylate various 

members of the FOXO proteins on specific residues that lead to their ultimate 

degradation and sequestration, therefore restricting their nuclear translocation and 

preventing apoptotic transcriptional machinery (63-66). Moreover, GSK3 can be 

directly regulated by ERK, AKT, PKC, and S6K. GSK3 functions to inhibit survival, 

proliferation, and motility targets including beta-catenin and various adhesion proteins. 

It can also phosphorylate and activate TSC2 and lead to inactivation of mTORC1 

signaling (67).  
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Figure 5. Pathway Crosstalk. The Ras-MAPK and PI3K-mTORC1 pathways 

regulate each other via cross-inhibition (red) and cross-activation (green). Each 

pathway has a mechanism to negatively feed onto the other: ERK phosphorylation of 

GAB and AKT phosphorylation of Raf. Components of the Ras-ERK pathway (Ras, 

Raf, ERK, and RSK) also positively regulate the PI3K-mTORC1 pathway. TSC2 and 

mTORC1 are key integration points that receive many inputs from both the Ras-ERK 

and PI3K signaling. Positive regulation of the substrate protein is shown as an arrow. 

Negative regulation of the substrate protein is depicted as a blunt-ended line. 

Reprinted with permission from: Mendoza MC, Er EE, Blenis J. The Ras-ERK and 

PI3K-mTOR pathways: cross-talk and compensation. Trends in biochemical sciences. 

2011;36(6):320-8. doi: 10.1016/j.tibs.2011.03.006. (49) License # 3961020803450 
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1.6 Therapeutic implications of targeting the PI3K/AKT/mTOR pathway 

NSCLC harbors molecular alterations involving the PI3K/AKT/mTOR and 

MAPK pathways, and thus, pharmacologic inhibitors of both pathways are given 

extensive priority for development to further test in the clinic. Deregulations of the 

PI3K/AKT/mTOR pathway occur at variable frequencies in lung tumorigenesis and 

have been correlated with more advanced stage disease as well as tumor grade (68). 

Aberrant mechanisms of activation can occur through a variety of ways, including 

upregulation of RTK activity upstream of PI3K, amplification and/or mutations in 

PIK3CA, KRAS, STK11, AKT, or inactivating mutations in the negative regulator 

phosphatase and tensin homolog (PTEN) (69). Collectively, targeting these pathways 

remains both an opportunity and a challenge for cancer treatment. 

The earliest mTOR inhibitor discovered was rapamycin and was initially 

developed for use as an active anti-fungal and immunosuppressive agent. The anti-

proliferative effects first seen in studies involving cancer cell lines led to the active 

interest in the mTOR pathway as a potential anti-cancer target of interest. The 

mechanism by which rapamycin exerts its effects is by allosteric inhibition of the 

mTORC1 complex with high affinity to the FKBP-12/rapamycin binding (FRB) domain 

of mTOR (70). Additionally, rapamycin has been shown to selectively inhibit mTORC1 

activity and have minimal effects against mTORC2; although extended treatments 

have shown to increase sensitivity of this complex to the drug in some cellular 

contexts (71). The general effects seen in the clinic with rapamycin have been modest 

and mainly result in stability of disease. Analogs of rapamycin have since been 

developed, which have similar molecular structures but differing physiochemical 

properties. Examples of these rapalogs include everolimus, temsirolimus, and 



www.manaraa.com

19 
 

deforolimus, and have undergone numerous clinical trials in a wide range of cancers. 

Thus far, everolimus and temsirolimus have been approved for advanced renal cell 

carcinoma (72, 73). To increase the anti-tumor response, numerous strategies have 

been proposed including the combinations of rapalogs with chemotherapeutic drugs 

to induce cell death or combining targeted therapies specific for the PI3K/AKT/mTOR 

pathway or parallel pathways.  

Moreover, one of the major limitations in the effectiveness of rapalogs has 

been the discovery of de-repression of negative feedback loops mediated by 

mTORC1. Studies have elucidated that mTORC1 inhibition releases a negative 

feedback loop on the insulin receptor substrate (IRS-1) and growth-factor-receptor-

bound protein 10 (GRB10), resulting in increased RTK signaling to PI3K, AKT, and/or 

to other pathways through ERK1/2. Also, rapalogs have been shown to shut down 

downstream S6K signaling completely, but only inhibit the translational repressor 

4EBP1 transiently, therefore protein synthesis, cell proliferation and survival 

mechanisms can still continue to occur (69, 74, 75). The increased understanding of 

the drawbacks of first generation mTOR inhibitors resulted in the advent of new 

catalytic ATP-competitive inhibitors being developed targeting the mTOR kinase 

domain, with the expectation to inhibit both of the critical mTORC1 and mTORC2 

complexes and prevent feedback activation of AKT (76, 77). Early clinical trials 

identified mTORC1/2 inhibitors having superior single agent activity compared with 

previous rapalogs. Partial responses have been reported in NSCLC, estrogen 

receptor (ER) positive breast cancer, and hepatocellular carcinoma using either of two 

mTORC1/2 inhibitors (AZD2014 and CC-223); however, optimized patient selection is 
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still further warranted and these drugs have not yet reached the initial expectations as 

single agents (78, 79). 

The critical role of PI3K in cancer led to significant efforts in developing drugs 

targeting it, many of which are still undergoing clinical evaluation in various phases of 

trials. There are three distinct PI3K classes which are further subdivided into varying 

isoforms. Class IA PI3Ks are the most studied and are made up of a p110 catalytic 

subunit (encoded by three homologous isoforms: p110α, p110β and p110δ) and a 

p85 regulatory subunit (16). Compared to other targeted drugs aimed at oncogenic 

kinases (e.g. EGFR, RAF, ALK), inhibitors against PI3K have had limited efficacy as 

single arm treatments in early phase clinical trials in tumors that harbored PI3K 

pathway hyperactivation (18). First generation pan-PI3K inhibitors were initially 

developed, such as wortmannin and LY294002, but were hindered in early phases of 

human trials due to their toxicities and lack of specificity. Most of these inhibitors in 

early clinical trials are catalytic ATP-competitive inhibitors and target all class I PI3K 

isoforms with similar effectiveness. This could be problematic in that these drugs 

target all the class I PI3K isoforms regardless of their actual oncogenic role, and 

moreover, have been shown to display off-target effects on other effectors of the 

phosphatidylinositol 3-kinase-related kinases (PIKK) family, including ATM 

Serine/Threonine Kinase (ATM), Ataxia Telangiectasia And Rad3-Related Protein 

(ATR), and DNA-dependent Protein Kinase (DNA-PK) (80, 81). Therefore, isoform-

specific inhibitors are now being developed for clinical testing with the expectation for 

achieving better safety and efficacy profiles and reduce toxicity. Determining the 

specific disease settings by which the different PI3K isoforms contribute to the 

tumorigenic phenotype will be crucial to increase the effectiveness of these inhibitors.  
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Furthermore, AKT inhibitors have also been developed, particularly since this 

master regulator integrates the central node of the PI3K/mTOR pathway. Several ATP 

mimetics and inhibitors of non-catalytic sites of AKT have been pushed into the clinic 

for evaluation. Although AKT1 activating mutations occur infrequently in NSCLC, 

overexpression of AKT1 and AKT2 occurs at higher rates, exposing possible 

therapeutic vulnerability to these AKT inhibitory agents (69, 82). However, early phase 

trials have shown, at best, stability in disease as the most encouraging overall 

response with anti-proliferative, rather than anti-tumorigenic, effects mediated by 

single agent therapy (83, 84).  Furthermore, experimental models and early clinical 

trials have suggested that AKT-specific inhibitors may be most efficacious in specific 

molecular settings, particularly in tumors harboring PTEN loss or PIK3CA mutations, 

leading to the hyperactivity of the AKT mediated pathway. Importantly, resistance 

mechanisms such as the relief of mTORC1 feedback inhibition on IRS-1 signaling  

(mentioned above), and de-repression of FOXO leading to increased activation of 

RTKs, PI3K, PDK1, and other targets downstream of AKT, have been also elucidated 

(85). In all, AKT inhibitors are being approached with caution as their disturbance to 

the AKT pathway can lead to metabolic dysregulations and hyperglycemia (86).  

1.7 Therapeutic implications of targeting the RAS/RAF/MEK (MAPK) pathway 

Three RAS genes (HRAS, NRAS, KRAS) have been identified and aberrant 

mutations in these isoforms have been discovered to have major oncogenic 

implications. Specifically, KRAS mutations are the most prevalent and have been 

found in 1/3 of all cancers, including colon, pancreatic, and lung. The most frequent 

codons of KRAS that are mutated in lung cancers occur at codons 12, 13 and 61 (87). 

Mutations in this oncogene result in a constitutively active KRAS leading to 
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hyperactivity of the MAPK and mTOR pathways. For over two decades, numerous 

strategies were attempted to target oncogenic KRAS signaling, including direct 

inhibitors of the protein, RNA interference, inhibitors that prevent localization of RAS 

to the membrane, and targeting drugs of downstream effectors (88). One of the 

earliest efforts to block RAS was through abrogation of its localization via 

farnesylation to the plasma membrane via farnesyl transferase inhibitors. However, 

this drug class failed when pursued for evaluation in pre-defined mutant KRAS 

cancers, since eventual recognition that KRAS could be alternatively modified via 

other mechanisms to relieve the translocation repression, ultimately allowed KRAS 

back to the plasma membrane even in the absence of farnesylation (89).  

Refocused therapeutic strategies have gained momentum over the years by 

developing targeted therapies against effectors downstream of KRAS. Notably, the 

identification of BRAF mutations in melanomas have sparked clinical testing of 

multiple RAF kinase inhibitors. BRAF mutations have been reported in about 2-3% of 

lung adenocarcinomas. Based on previous marked anti-tumor activity in BRAFV600E 

mutant melanoma, mutant BRAF inhibitors (e.g. dabrafenib, vemurafenib) have made 

it into clinical evaluation for advanced stage BRAF positive NSCLC (90). However, the 

efficacy of these inhibitors in the KRAS mutant setting still remains to be resolved as 

responses with single agent RAF inhibitors have been poor, specifically in KRAS 

mutant settings. Studies have elucidated paradoxical reactivation of downstream 

ERK1/2 following BRAF inhibition. Specifically, BRAF inhibitors resulted in either relief 

of RAF-inhibitory autophosphorylation mechanisms or RAF inhibitor-induced 

transactivation of RAF dimerization, leading to increased ERK signaling (91-94). 
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Thus, combination regimens to combat such bypass mechanisms of resistance are 

still being established and evaluated in the clinical setting.  

Resistance mechanisms of RAF inhibition prompted avid development of 

downstream MEK targeted therapies with the hopes of more durable pathway 

inhibition. Selumetinib and trametinib are two allosteric MEK1/2 inhibitors that have 

been evaluated as either single agents or in combination with cytotoxic agents to 

target mutant KRAS NSCLC. Early stage clinical trials showed that selumetinib as a 

single agent led to tumor responses in advanced cancer patients; however, phase II 

trials in selected patient populations with previously treated NSCLC (including some 

patients with KRAS mutations) showed little clinical activity (95, 96). Further, based on 

pre-clinical in vivo evidence, studies showed that cytotoxic agents such as docetaxel 

in combination with selumetinib resulted in synergistic anti-tumor effects, and thus 

sparked clinical trials of this dual combination. Results from a phase II trial evaluating 

this combination in advanced stage (III-IV) chemo-refractory KRAS mutant NSCLC 

patients found a trend in better overall survival (OS), but the study failed to meet the 

primary endpoint, and only a fraction of the patients were partial responders (97). In 

addition, trametinib has also been examined in the clinic. A phase II trial evaluating 

trametinib as monotherapy versus docetaxel in KRAS mutant NSCLC resulted in no 

statistically significant or clinically meaningful endpoints (98). Current studies are 

evaluating the combination of trametinib with chemotherapy drugs such as docetaxel 

or pemetrexed. Collectively, it can be concluded that although MEK inhibitors can 

have the potential for significant anti-tumor effects, better patient selection, 

optimization of dosing regimens, and rational combinatorial therapeutic strategies are 

necessary to find significant clinical utility of these agents. 
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1.8 RICTOR’s mTORC2-dependent and independent tumorigenic functions 

The mTORC2 complex is comprised of mTOR and the essential components 

RICTOR, mSIN1, and mLST8. This complex regulates a variety of important cellular 

functions including proliferation, survival, and metabolism through phosphorylation of 

various AGC kinase family members such as AKT, PKCα, and SGK (99). RICTOR 

and mSIN1 function as adaptor molecules serving as critical regulators of mTORC2 

substrate specificity and binding. Specifically, RICTOR’s Gly-934 residue is critical in 

the formation of the RICTOR/mSIN1 heterodimer interaction required for the structural 

integrity, stability, and functionality of the complex (100).  

Increasing reports have elucidated the contribution of RICTOR toward 

tumorigenic phenotypes functioning through mTORC2-dependent and independent 

manners. Initially, RICTOR’s ortholog studied in Dictyostelium was found to be a 

mediator of cell migration and chemotaxis (101). Moreover, multiple in vitro studies 

have indicated RICTOR’s role, in conjunction with mTORC2, in cell migration and 

cytoskeletal regulation via the phosphorylation of PKCα, paxillin, RhoaA, and Rac1 

(41, 102). Moreover, mTORC2 activity is elevated in gliomas, as evidenced by 

overexpression of RICTOR in cell lines and primary tumor cells, resulting in enhanced 

growth and cellular motility (103). Although most of the functional roles of RICTOR 

have been characterized as part of mTORC2, RICTOR carries exclusive independent 

roles. For example, RICTOR was shown to form a separate complex with Myo1c, 

independent of mTORC2, and participates in cortical actin remodeling events (104). 

Recently, insight into the mechanism underlying RICTOR’s regulation of cell migration 

and potential contribution to metastasis was elucidated by finding that RICTOR 

suppresses RhoGDI2, independently of the mTORC1/2 complexes, promoting the 
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activity of the Rho proteins RAC1 and CDC42 (105, 106). Importantly, RhoGDI2 has 

been previously implicated as an invasion and metastasis suppressor gene and thus, 

its loss has been associated with metastatic cancers (107). 

 Additionally, RICTOR can interact with integrin-linked kinase (ILK) to increase 

AKT phosphorylation and regulate cancer cell survival, and this RICTOR/ILK complex 

is also a critical component and mediator of TGFβ-1-induced epithelial-to-

mesenchymal transition (EMT) in mammary epithelial cells (108, 109). Further, a 

kinase-independent function for RICTOR has been proposed through its specific 

association with CULLIN-1 and RBX1, forming a functional E3 ubiquitin ligase 

complex that promotes SGK1 ubiquitination and degradation, providing a mechanistic 

explanation for the high SGK1 expression in various cancers (110, 111). Micro-RNA 

(miRNA) regulation of RICTOR has also been reported by linking the overexpression 

of RICTOR as a target of miR-218, suggesting that the epigenetic silencing of this 

miRNA and subsequent activation of the AKT signaling pathway significantly 

contributes to oral carcinogenesis (112). Lastly, RICTOR has been shown to be 

required for the development of prostate cancer in the context of PTEN loss, and the 

targeting of RICTOR can induce G1 cell cycle arrest and reduction in cyclin D1 

expression levels in colon, breast, and prostate cancer cells (113-115). In summary, 

RICTOR’s oncogenic role is increasingly becoming evident, as this scaffold molecule 

can regulate a multitude of tumorigenic events such as cellular motility, morphology, 

cell proliferation, survival, and protein degradation. 
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1.9 Hypothesis and specific aims 

In summary, the paradigm shift of treatment and diagnosis of lung cancer has 

emerged from a single disease entity with limited therapeutic opportunity to one that is 

comprised of multiple histotypes, each with its own genomic profile, sparking a 

personalized medicinal approach to therapy. Although there are specific examples of 

targeted therapies making drastic impact on overall survival of patients with tumors 

that are driven by specific oncogenes (e.g. EGFR, ALK, B-RAF), over 30% of lung 

adenocarcinomas are still yet to uncover the genetic underpinnings driving these 

tumors (Figure 2). In an effort to identify novel potentially actionable targets that 

contribute to mechanisms of resistance to targeted therapies, we utilized molecular 

profiling data associated with the BATTLE-2 clinical trial, which enrolled advanced 

stage chemorefractory NSCLC patients with the goal of evaluating the effects of 

targeted therapies based on KRAS-mutated lung tumors (116). Since the majority of 

enrolled cases were lung adenocarcinomas, we focused our studies on this lung 

cancer subtype and identified a subgroup (17%) of advanced stage patients with 

RICTOR genomic alterations (mutations or amplifications). RICTOR’s precise role in 

the context of NSCLC has not been extensively evaluated. A recent study classified 

RICTOR amplifications as a novel subset of patients with lung cancer that may 

respond to dual mTORC1/2 inhibitors (117). To expand on this finding, we were 

interested to further define settings where RICTOR or RICTOR-associated signaling 

blockade in combination with targeted therapy may enhance response in metastatic 

disease and improve outcome.  
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Therefore, the proposed hypothesis is that RICTOR alterations promote 

oncogenic properties and RICTOR-associated signaling blockade could serve as an 

effective therapeutic strategy in KRAS mutant NSCLC.  

To pursue this hypothesis, the following specific aims were developed: 

 Specific Aim 1: To assess the prevalence of RICTOR alterations in 

early and advanced stage NSCLC and determine if these alterations 

correlate with clinical outcome. 

 Specific Aim 2: To determine the phenotypic consequences of RICTOR 

knockdown in in vitro and in vivo NSCLC models. 

 Specific Aim 3: To evaluate the potential therapeutic benefit of 

RICTOR-associated signaling blockade in pre-clinical NSCLC models. 
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Chapter 2 

Materials and Methods 

Cell lines and reagents 

NSCLC cell lines (H23, H2009, H1792, H1650, H3122, H2172, H2126, A549, 

HCC44, CALU6, HCC193, and H1819) were either obtained from American Type 

Tissue Collection (ATCC, Manassas, VA) or were obtained from collaborators and 

authenticated via STR DNA fingerprinting at the University of Texas MD Anderson 

Characterized Cell Line Core (CCLC). All cell lines were grown in RPMI 1640 

supplemented with 10% FBS (Cellgro, Mediatech, Manassas, VA) with no antibiotics. 

Whole genome single nucleotide polymorphism (SNP) array profiling (previously 

described (118)) was obtained for the cell line panel to determine RICTOR amplified 

(copy number variation (CNV ≥ 3.5) and non-amplified cell lines (CNV = 2). 

Immortalized human bronchial epithelial cells (HBEC) expressing wild-type KRAS 

(HBEC3-KT) or KRAS-mutant with stable p53 knockdown (HBEC3-KT53KC12) cell 

lines were provided by Drs. Adi Gazdar and John Minna (University of Texas 

Southwestern Medical Center, Dallas, TX) and maintained in keratinocyte-SFM 

medium with bovine pituitary extract and human recombinant epidermal growth factor 

(Invitrogen). Generation of stable RICTOR knockdown cell lines were developed 

using pTRIPZ inducible lentiviral shRNA-encoding plasmids (RICTOR shRNA 

#RHS4696, Non-silencing shRNAmir Control (NTC) #RHS4743) (GE Dharmacon, 

Lafayette, Colorado) for the inducible knockdown of RICTOR in the presence of 

2μg/mL doxycycline hyclate (SIGMA) and were selected with 2μg/mL puromycin 

(SIGMA). RFP expression was also utilized for monitoring transduction and 
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knockdown efficiency. Targeted inhibitors AZD2014 (vistusertib), AZD6244 

(selumetinib), and GSK1120212 (trametinib) were obtained from Selleck Chemicals 

(Houston, TX) and dissolved in DMSO to create stock solutions. All additional 

dilutions were performed using the respective cell culture medium for working 

concentrations. 

Immunoblotting and antibodies 

Western blotting analyses were performed on total protein lysates extracted 

from NSCLC cell lines. In brief, cell cultures were washed with ice-cold phosphate 

buffered saline (1X PBS) containing protease and phosphatase inhibitor tablets 

(Roche, Basel, Switzerland) and homogenized in 1X RIPA buffer (SIGMA-Aldrich, St. 

Louis, MO). The cells were scraped and samples were centrifuged at 14,000 rpm for 

25 minutes at 4C and protein concentrations of supernatants were quantified by DC 

Protein Assay per manufacturer’s instructions (Bio-Rad, Hercules, CA). Equal 

amounts of protein were separated by pre-cast 4-15% gradient gels (Bio-Rad) via 

SDS-PAGE and transferred onto nitrocellulose membranes using the Trans-Blot 

Turbo Transfer System (Bio-Rad). Membranes were blocked with 5% milk for 1 hour, 

and all washes were in TBS-T. The membranes were incubated with the following 

commercial antibodies: RICTOR, p-RICTOR (Thr1135), p-AKT (Ser473), AKT, p-

MEK1/2 (Ser217/221), MEK1/2, p-p44/42 MAPK (Thr202/Tyr204) (p-ERK1/2), 

ERK1/2, c-PARP, PARP, p-mTOR (S2481), mTOR, p-NDRG1 (Thr346), NDRG1, 

mSIN1 are from Cell Signaling Technologies (Danvers, MA); β-actin-HRP (used as 

equal loading control) and p-PKCα (Ser657) are from Santa Cruz Biotechnology 

(Santa Cruz, CA). Secondary antibodies included horseradish peroxidase-conjugated 

anti-rabbit or anti-mouse antibodies obtained from Cell Signaling Technologies. 
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Immunoreactivity was visualized by use of Western Lightning Plus-ECL (Perkin-

Elmer, Waltham, MA) and exposure to x-ray film according to manufacturer 

instructions. Densitometric quantification of bands was performed using Image Studio 

Lite 5.0 software (Lincoln, Nebraska). 

siRNA knockdown studies 

Knockdown studies were performed using ON-TARGETplus SMARTpool 

siRNAs targeting the gene of interest at a final concentration of 30 nmol/L using 

DharmaFECT I transfection reagent (GE Dharmacon, RNAi Technologies, Thermo). 

ON-TARGETplus Non-targeting siRNA pools served as negative controls. siRNAs 

were prepared using Opti-MEM I serum free media (ThermoFisher), and added to 

culture dishes for 24 hours. Fresh complete media was replaced after 24 hours and 

incubation continued for a total of 72-96 hours before downstream analysis. 

Cell viability assays 

For MTS assay testing cell viability, NSCLC cells were seeded in octuplicate at 

a density of 2,000 cells per well in 96-well plates. An endpoint viability assay was 

performed using MTS assay (3-4, 5-dimethyl-thiazol-2-yl)-5-(3-

carboxymethoxyphenyl-2-(4-solfophenyl)-2H-tetrazolium, inner salt) at the indicated 

time points according to the manufacturer’s protocol (Promega, Madison, WI). For 

experiments evaluating the effect of RICTOR knockdown with mTORC1/2 and/or 

MEK1/2 inhibitors, the crystal violet staining and MTT dye reduction method was 

used. Stable inducible shRICTOR cell lines were seeded at 2x104 cells per well in 6-

well plates in the presence of 2μg/mL doxycycline. The next day, each well was 

treated with either selumetinib, trametinib, AZD2014, or DMSO (control) at the 
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indicated concentrations and incubation was continued for a further 7 to 10 days, with 

drug/media changed every 3 days. MTT solution (Methylthiazolyldiphenyl-tetrazolium 

bromide, 1mL per well, 2mg/mL; SIGMA-Aldrich) was added to each well, followed by 

incubation for 2-3 hours at 37°C. The media was then removed and the dark blue 

crystals in each well were dissolved in 400μL of DMSO and transferred to 96-well 

plates. Absorbance was measured at test and reference wavelengths of 550 and 630 

nm, respectively, using a FLUOstar Omega microplate reader (BMG LABTECH, 

Ortenberg, Germany). The percentage of cell viability is shown relative to untreated 

controls. 

Cell proliferation assay 

 Cell proliferation was performed using stably transduced shRICTOR cell lines 

(H23, H2009, H1792) by seeding 4x105 cells in 10cm dishes in +/- doxycycline 

containing media. Time points were analyzed at 4, 8, 12, and 16 days of continuous 

shRICTOR (+doxycycline) treatment to evaluate the effects of RICTOR knockdown. 

Total cell number was counted and recorded using the Cellometer K2 Image 

Cytometer (Nexcelom, Lawrence, MA). A fixed ratio of cells was subsequently split 

into new dishes and sub-cultured for the indicated time points of the experiment. 

Cell cycle analysis 

 For cell cycle analysis, cells were harvested via trypsinization, washed with ice-

cold 1X PBS, and fixed with 70% ice-cold ethanol. Fixed cells were then re-washed, 

treated and stained with propidium iodide/RNase using the Propidium Iodide Flow 

Cytometry Kit (Abcam, Cambridge, UK) per manufacturer’s protocol. Stained cells 
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were immediately analyzed using the BCI Gallios Analyzer flow cytometer (Beckman 

Coulter, Brea, CA). 

Human p-MAPK Array 

A Proteome Profiler Array (Human Phospho-MAPK Array Kit) (R&D Systems, 

Inc., Minneapolis, MN) was used to assess the relative level of phosphorylation of 26 

kinases involved in the three major families of MAPK pathways. Array was performed 

according to manufacturer’s instructions. H23 cells were treated with either NTC or 

siRICTOR for 72 hours, and the cells were subjected to lysis using the buffer provided 

in the kit. The arrays were then blocked with blocking buffer and incubated with the 

cell lysates (300 µg/sample) overnight at 4C. The next day, arrays were washed and 

incubated with a biotinylated antibody for 2 hours, washed, and incubated with a 

streptavidin-horseradish-peroxidase-conjugated detection antibody, treated with 

Western Lightning Plus-ECL, and exposed to x-ray film. 

Clonogenic survival assay  

NSCLC cells were seeded in 6-well plates (250-500 cells per well) in the 

presence or absence of 2μg/mL doxycycline for inducible shRICTOR cell lines or non-

targeting control (or siRNA against RICTOR) for 2-3 weeks, with change of media 

every 2-3 days. After the endpoint, wells were washed with PBS and fixed with 4% 

paraformaldehyde for 10 minutes, followed by staining with 0.05% crystal violet for 30 

minutes. Stained wells were then washed thoroughly with water to clear any unbound 

crystal violet. Colony area was calculated using Image J software (NIH, Bethesda, 

Maryland) to determine percentage area stained relative to control. Soft agar assay 

testing anchorage independent growth was performed using Millipore’s Cell 
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Transformation Detection Assay per manufacturer’s recommendations (Merck KGaA, 

Darmstadt, Germany). In brief, 6-well plates were prepared with 0.8% base agar layer 

and allowed to solidify. 2,500 cells/well were resuspended in 0.4% top agar solution 

and aliquoted appropriately on top of the base agar layer (pre-warmed to 37C). 

Doxycycline containing media was used to induce continuous shRICTOR knockdown 

compared to NTC. Cells were incubated for 21-28 days at 37°C until colonies were 

formed, with frequent media change every 3 days. Colonies were then visualized with 

the accompanied cell stain solution and quantified with the cell quantification solution 

by measuring absorbance at 490nm. A well containing only base and top agar layers 

without cells served as background control for quantification. 

Migration and Invasion assays 

The cell migration assay was performed using a 24-well transwell plate with 

8μm polyethylene terephthalate (PET) membrane filters (Corning Inc., Corning, NY) 

that separate the top and bottom culture chambers. In brief, respective NSCLC cell 

lines were transfected with siRNA targeting RICTOR for 72 hours, harvested, and 

plated in the upper chamber at a density of 20,000 cells per well in 500μL of 0.5% 

reduced serum RPMI 1640 media. The bottom chambers contained 750μL of either 

5% serum (serves as chemoattractant) or 0.5% reduced serum conditions. Cells were 

allowed to migrate for 24 hours, and filters were then removed and non-migrant cells 

on the upper side were wiped away with use of a cotton swab. Filters were fixed and 

stained using the Diff-Quik Stain Set Kit (Siemens Healthcare Diagnostics, Newark, 

DE) per manufacturer’s protocol and mounted onto microscope slides. Five random 

fields were quantified at 10X objective lens in a light microscope, and results are 

displayed as the average number of cells migrated. The cell invasion assay was 
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similar to the described protocol above, except that the transwell chambers used were 

Corning BioCoat Growth Factor Reduced Matrigel invasion chambers and cells were 

fixed and stained after 48 hours of incubation. 

Xenograft tumor models 

All animal procedures and care were approved by the MD Anderson Cancer 

Center Institutional Animal Care and Usage Committee. Animals received humane 

care as per the Animal Welfare Act and the NIH “Guide for the Care and Use of 

Laboratory Animals”. For tumorigenicity studies evaluating the effects of RICTOR 

knockdown, H1792 and H23 stable shRICTOR inducible cell lines were expanded and 

harvested, washed, and pre-cooled in serum-free RPMI 1640 medium mixed 1:1 with 

Corning growth factor reduced Matrigel Matrix (Corning, NY). Female athymic nude 

mice, between 6-8 weeks old, were injected subcutaneously in the flank with H1792 

(2x106) or H23 (5x106) shRICTOR cells. Mice were divided into two groups with 6 

mice per arm:  doxycycline feed (600mg/kg; BioServ, Flemington, NJ) immediately 

after inoculation of cells, or control group (regular feed). Tumors were measured twice 

weekly with a digital caliper, and size was calculated as (length x width2/2). The mice 

were euthanized and the tumors were collected for protein lysate analysis. Protein 

lysates were prepared by homogenization using the Precellys24 tissue homogenizer 

(Bertin Instruments, France).  

For studying the effects of drug treatments on xenograft growth, H1792 

shRICTOR cells (4x106) were prepared as described above and injected 

subcutaneously in the flanks of 6-8 week old female athymic nude mice. After the 

average tumor volumes reached 100mm3, mice were randomized into 1 of 5 
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treatment arms (6 mice/arm), and the indicated treatment regimens were performed 

by oral gavage for 22 days. The treatment arms consisted of: vehicle (1% tween-80, 

bid), selumetinib (25mg/kg, bid), selumetinib (25mg/kg, bid) + doxycycline feed 

(600mg/kg), AZD2014 (15mg/kg, qd), and selumetinib + AZD2014 (equivalent 

dosages used as per individual inhibitor treatments). Selumetinib was obtained from 

Selleck Chemicals and AZD2014 was obtained from MedChem Express (Monmouth 

Junction, NJ). Tumor volumes and body weights were recorded twice weekly. Tumors 

were extracted on the final day 3 hours following the last treatment, and protein 

lysates were prepared as described above.  

Clinical datasets and patient sample characteristics  

A total of 3 datasets were analyzed independently in our study: the Biomarker 

Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE-2, 

n=92 lung adeno cases with mutation data; n=107 lung adeno cases with mRNA 

expression data), The Cancer Genome Atlas (TCGA Lung Adenocarcinoma, n=230 

with mutation cases, n=496 with mRNA expression data), and Profiling of Resistance 

Patterns and Oncogenic Signaling Pathways in Evaluation of the Thorax 

(PROSPECT, n=151). The BATTLE-2 trial is a randomized phase II, multi-center 

biopsy-mandated and biomarker-based clinical trial of targeted therapy in advanced 

stage chemorefractory NSCLC (116). Clinical and genomic data for 230 mostly early-

stage, surgically resected lung adenocarcinomas that were analyzed in the TCGA 

dataset was obtained from the cBio Cancer Genomics Portal and GDC data portal 

(https://gdc.nci.nih.gov/) (119, 120). The PROSPECT dataset includes surgically 

resected tumor tissue collected from patients with lung adenocarcinoma at MD 

Anderson Cancer Center. Bioinformatics analyses and support was provided by Dr. 
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Jing Wang and Li Shen (Department of Bioinformatics and Computational Biology, 

MD Anderson Cancer Center). 

Statistical analyses  

The results presented are the average of at least two experiments each 

performed at least in triplicate. Data obtained from cell culture assays were 

summarized using descriptive and inferential statistical analyses accompanied by 

graphs and conducted by using GraphPad Prism 6 (GraphPad Software, La Jolla, 

CA). Differences between groups were calculated by the t-test unless otherwise 

noted. A P-value < 0.05 was considered significant. Cox hazard proportional models 

were applied for association between mRNA expression and overall survival. 
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Chapter 3 

Results 

3.1 Identification of RICTOR alterations in advanced NSCLC 

NSCLC is biologically and genomically diverse and has differing responses to 

standard chemotherapy and targeted therapy developed to inhibit key molecular 

aberrations that drive cancer progression. However, over 30% of lung 

adenocarcinomas that are diagnosed have alterations that do not have a therapeutic 

target. In an effort to identify novel potentially actionable targets in advanced stage 

NSCLC, we utilized genomic profiling from an ongoing clinical trial termed the 

Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination 

(BATTLE-2) as a platform for our studies. The BATTLE-2 was a phase II trial that 

specifically targeted advanced stage, chemorefractory NSCLC patients who have 

failed at least one prior chemotherapeutic regimen (116).  Patients were adaptively 

randomized by KRAS status to one of four treatment arms: erlotinib (EGFRi), erlotinib 

plus MK2206 (AKTi), MK2206 plus selumetinib (AZD6244; MEKi), or sorafenib 

(RAFi/VEGFRi) (Figure 6). Prospective biopsies based on specified tumor markers 

were utilized for adaptive randomization to assign patients to the treatment arm with 

the most potential benefit on the basis of cumulative data at the time. Molecular 

profiling was performed on all acquired biopsies via the FoundationOne hybridization 

capture-based next-generation sequencing (NGS) test which evaluated over 182 

cancer-related genes (Foundation Medicine, Inc.).  
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Figure 6. Identifying novel actionable targets in refractory NSCLC using the 

BATTLE-2 clinical trial. The Biomarker-Integrated Approaches of Targeted Therapy 

for Lung Cancer Elimination (BATTLE-2) is a phase II trial that specifically targets 

advanced stage, chemorefractory KRAS mutated NSCLC patients that have failed at 

least one prior chemotherapeutic regimen. Exclusion criteria included tumors with 

sensitizing EGFR mutations or ALK gene fusions if they had not been previously 

treated with erlotinib or crizotinib. Patients agree to a baseline tumor biopsy (for 

biomarker analysis) and were adaptively randomized by KRAS status to one of four 

treatment arms: erlotinib (EGFRi), erlotinib plus MK2206 (AKTi), MK2206 plus 

selumetinib (AZD6244, MEKi), or sorafenib (RAFi, VEGFRi). The primary endpoint 

was 8-week disease control rate based on Response Evaluation Criteria in Solid 

Tumors (RECIST). The specific nodes of the pathways targeted are illustrated.  
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The detailed protocol and analysis of the NGS assay has been previously reported 

(121). The frequency of selected genes identified from the NGS targeted panel that 

carry mutations and/or amplifications are shown in Figure 7, which includes the entire 

NSCLC BATTLE-2 cases sequenced. The criteria used to identify potentially 

actionable targets were to first identify genes that were amplified or mutated, followed 

by if they were targetable. We focused our attention on RICTOR alterations as they 

have not been extensively studied in the context of NSCLC and are present at a 

relatively high frequency, suggesting possible actionability.

 

Figure 7. Frequency of potentially actionable genes that carry mutations and/or 

amplifications from the NGS FoundationOne targeted panel. The percentage 

shown is out of 159 NSCLC cases that have mutation/copy number alteration data. 

Frequently altered genes, such as KRAS and EGFR, were excluded from this graph 

since these were not novel targets. Genes are listed in Abbreviations section. The 

frequency of RICTOR gene alterations (~13.2%, 21/159) is highlighted in blue. 

  Moreover, we filtered our studies to lung adenocarcinoma cases since the 

majority of the enrolled patient population in the BATTLE-2 trial were of this NSCLC 

subtype. A total of 92 chemorefractory lung adenocarcinoma tumor biopsies have 

undergone NGS profiling. We identified RICTOR gene alterations in a total of 17.4% 
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(16/92) of cases, including 11.9% amplifications (11/92) and 5.4% mutations (5/92), 

which were mutually exclusive (Figure 8A, left).  

 

A) 

 

B)  

 

Figure 8. RICTOR alterations are present in early and advanced stage lung 

adenocarcinomas at similar frequencies. (A) Summary of frequency of RICTOR 

gene alterations (mutations or amplifications) in chemorefractory advanced lung 

adenocarcinoma samples (BATTLE-2, n=92) and in early stage lung adenocarcinoma 

samples (TCGA, n=230) (8). (B) Schematic of novel RICTOR gene mutations from the 

BATTLE-2 NSCLC cohort and number of mutant cases. 
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Mutations in the RICTOR gene have not been previously identified, particularly the 

functional roles of these mutations. Figure 8B illustrates the location along the 

RICTOR gene in which these novel mutations occur. The significance of these 

RICTOR mutations are yet to be determined, as the crystal structure of RICTOR has 

not been elucidated and current bioinformatics tools have failed to identify functional 

domains of this scaffold protein. However, a recent study attempted to shed light into 

RICTOR’s poorly understood domain architecture by searching for conserved regions 

to assign structural and functional domains (122). The study identified that similar to 

its counterpart RAPTOR, RICTOR also has HEAT, WD40, and PH domains that might 

be utilized for common motif binding to mTORC, mediating cellular localization and 

transmission of signaling to downstream effectors. Although this is the first such report 

analyzing RICTOR’s domain structure, experimental confirmation is still needed to 

validate these findings.  

Furthermore, to determine whether RICTOR alterations are an early event in 

lung cancer progression, we surveyed the frequency of alterations in early stage lung 

adenocarcinoma cases utilizing The Cancer Genome Atlas (TCGA) database (120, 

123). We identified a similar frequency of a total 13.4% (31/230) of RICTOR-altered 

cases, which included 10% amplifications (25/230) and 5.2% mutations (12/230). 

Interestingly, in contrast to the BATTLE-2 advanced stage tumors, some early stage 

tumors from the TCGA incurred concomitant amplifications and mutations (Fig. 8A, 

right). In addition, in surveying the frequency of RICTOR alterations across various 

cancer types, we found the highest prevalence of alterations in NSCLC, particularly 

lung adenocarcinoma, compared to other reported tumor types (Figure 9). 
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Figure 9. Cross-cancer mutational frequency of RICTOR in the TCGA 

database. cBioPortal query across various cancer types for RICTOR DNA 

mutation frequencies. Alteration frequency is displayed as a histogram across 

reported cancer studies. NSCLC datasets are marked with an asterisk, showing 

lung adenocarcinoma as the most frequently mutated tumor type. Database 

accessed on November 18, 2016. 

* 

* 
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3.2 RICTOR mRNA expression is higher in RICTOR amplified than non-amplified 

NSCLC 

We next evaluated the correlation between RICTOR amplification and RICTOR 

gene expression in our two datasets. There was a significant direct correlation 

between RICTOR gene amplification and RICTOR mRNA expression in the early 

stage TCGA dataset, and a trend seen in the advanced stage BATTLE-2 lung 

adenocarcinoma cases (Figure 10). Of note, when we performed this analysis 

including all NSCLC subtypes from the BATTLE-2 cases (total of 159 cases with DNA 

NGS profiling), there was statistical significance of direct correlation between RICTOR 

gene amplification and RICTOR mRNA expression (data not shown), suggesting that 

the sample size in the BATTLE-2 adenocarcinoma was too small to reach statistical 

significance. 

Figure 10. Correlation of RICTOR amplification to mRNA gene expression in 

lung adenocarcinoma cases. Correlation of RICTOR amplified vs. non-amplified 

cases to RICTOR mRNA (log2) expression levels in BATTLE-2 (n=92) (left) and 
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TCGA (n=230) (right) datasets. Red circle = amplified RICTOR case; blue circle = 

non-amplified RICTOR case. 

3.3 Associating RICTOR mRNA expression to clinical outcome 

To determine the association of RICTOR alterations to clinical outcome, we 

performed a univariate overall survival (OS) analysis of RICTOR mRNA expression in 

lung adenocarcinoma patients using the Cox proportional hazards model. As shown in 

Table 1, there is significantly worse overall survival in patients with advanced stage 

lung adenocarcinoma in the BATTLE-2 cases (OS, hazard ratio [HR]: 1.73, 95% 

confidence interval [CI]: 1.23-2.42, P=0.0015). We also saw a worse prognosis in our 

early stage surgically resected lung adenocarcinoma cases from the PROSPECT 

dataset (OS, HR: 1.54, 95% CI: 1.03-2.29, P=0.0337); however, no significance was 

seen in patients from the TCGA dataset.  

Table 1. Univariate overall survival analysis of RICTOR mRNA expression in 
lung adenocarcinoma patients by Cox proportional hazards model 

Study HR (95% CI) P-value 

BATTLE-2 Trial (n=107) 1.73 (1.23-2.42) 0.0015 

PROSPECT (n=151) 1.54 (1.03-2.29) 0.0337 

TCGA (n=496) 1.05 (0.81-1.37) 0.675 

Abbreviations: HR, hazard ratio; CI, confidence interval. 

 

3.4 Surveying the co-mutational landscape of RICTOR alterations 

We next explored the co-mutational landscape of RICTOR-altered cases using 

the TCGA lung adenocarcinoma dataset to determine enrichment of specific pathway 
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alterations that are known to be aberrantly regulated in lung cancers. We surveyed 

the percent alterations (mutations and/or copy number changes) in several key genes 

that play important roles in mediating pathways such as receptor tyrosine kinase 

(RTK) signaling, mTOR signaling, MAPK signaling, and oxidative stress response. 

The specific gene alterations and frequencies are listed in Table 2. As depicted in 

Figure 11, there were significantly higher PTEN co-mutant cases in the RICTOR-

altered group, suggestive of a hyperactive PI3K/RICTOR/AKT pathway. Interestingly, 

there was mutual exclusivity between RICTOR alterations and STK11 mutations in 

both the TCGA and BATTLE-2 datasets. We found an enrichment of alterations 

(mutations and/or amplifications) in several key genes of the MAPK pathway in 

RICTOR-altered cases compared to the rest. There was a notably high percentage of 

KRAS, NF1, BRAF/CRAF alterations in the RICTOR-altered cases. These data 

suggest that RICTOR expression could be an important co-oncogenic driver in lung 

cancer progression, and thus we focused our efforts on characterizing the importance 

of RICTOR, specifically in KRAS mutant settings. 
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Figure 11. Surveying the co-mutational landscape of RICTOR-altered cases. 

Selected pathways are shown with percentages of gene alterations (mutations and/or 

copy number changes) extracted from the lung adenocarcinoma dataset of the 

cBioPortal for Cancer Genomics. The percentages of gene alterations in RICTOR-

altered cases (outside parenthesis) are compared to non-altered cases (inside 

parenthesis).  
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Table 2. List of co-mutant genes and their frequency of alterations (TCGA LuAd) 

Gene 
Type 
of Alt 

# in RICTOR 
 alt (%) 

(out of 31) 

# in RICTOR 
un-alt (%) 

(out of 199) 

Log 
ratio 

p-value q-value Tendency 

EGFR 

mut 4 (12.9%) 29 (14.57%) -0.18 0.531 0.865 Mut exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mut exclusivity 

amp 3 (9.68%) 12 (6.03%) 0.68 0.328 0.801 Co-occurrence 

ERBB2 
mut 2 (6.45%) 4 (2.01%) 1.68 0.187 0.733 Co-occurrence 

amp 1 (3.23%) 5 (2.51%) 0.36 0.585 0.865 Co-occurrence 

MET 

mut 1 (3.23%) 18 (9.05%) -1.49 0.24 0.733 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

amp 3 (9.68%) 5 (2.51%) 1.95 0.0777 0.629 Co-occurrence 

ALK mut 3 (9.68%) 15 (7.54%) 0.36 0.448 0.865 Co-occurrence 

RET 
mut 1 (3.23%) 8 (4.02%) -0.32 0.652 0.865 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

ROS1 
mut 3 (9.68%) 9 (4.52%) 1.1 0.209 0.733 Co-occurrence 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

KRAS 

mut 8 (25.81%) 67 (33.67%) -0.38 0.257 0.748 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

amp 1 (3.23%) 12 (6.03%) -0.9 0.455 0.865 Mutual exclusivity 

NRAS 

mut 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

del 0 (0.00%) 4 (2.01%) <-10 0.558 0.865 Mutual exclusivity 

amp 1 (3.23%) 1 (0.50%) 2.68 0.252 0.703 Co-occurrence 

HRAS 
mut 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

RIT1 
mut 0 (0.00%) 5 (2.51%) <-10 0.482 0.865 Mutual exclusivity 

amp 5 (16.13%) 27 (13.57%) 0.25 0.439 0.865 Co-occurrence 

NF1 
mut 9 (29.03%) 18 (9.05%) 1.68 3.93E-03 0.324 Co-occurrence 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 



www.manaraa.com

48 
 

amp 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

BRAF 
mut 4 (12.90%) 18 (9.05%) 0.51 0.342 0.83 Co-occurrence 

amp 3 (9.68%) 3 (1.51%) 2.68 0.0336 0.475 Co-occurrence 

RAF1 mut 1 (3.23%) 1 (0.50%) 2.68 0.252 0.733 Co-occurrence 

MAP2K1 
mut 0 (0.00%) 3 (1.51%) <-10 0.646 0.865 Mutual exclusivity 

amp 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

KEAP1 
mut 4 (12.90%) 36 (18.09%) -0.49 0.338 0.83 Mutual exclusivity 

del 0 (0.00%) 4 (2.01%) <-10 0.558 0.865 Mutual exclusivity 

CUL3 

mut 1 (3.23%) 3 (1.51%) 1.1 0.442 0.865 Co-occurrence 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

amp 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

NFE2L2 
mut 0 (0.00%) 4 (2.01%) <-10 0.558 0.865 Mutual exclusivity 

amp 1 (3.23%) 5 (2.51%) 0.36 0.585 0.865 Co-occurrence 

PTEN 
mut 2 (6.45%) 1 (0.50%) 3.68 0.0485 0.612 Co-occurrence 

amp 2 (6.45%) 2 (1.01%) 2.68 0.0888 0.629 Co-occurrence 

PIK3R1 
mut 0 (0.00%) 2 (1.01%) <-10 0.748 0.865 Mutual exclusivity 

del 0 (0.00%) 3 (1.51%) <-10 0.646 0.865 Mutual exclusivity 

PIK3CA 

mut 1 (3.23%) 14 (7.04%) -1.12 0.372 0.863 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

amp 2 (6.45%) 3 (1.51%) 2.1 0.136 0.629 Co-occurrence 

AKT1 

mut 0 (0.00%) 2 (1.01%) <-10 0.748 0.865 Mutual exclusivity 

del 0 (0.00%) 1 (0.50%) <-10 0.865 0.865 Mutual exclusivity 

amp 0 (0.00%) 2 (1.01%) <-10 0.748 0.865 Mutual exclusivity 

STK11 
mut 0 (0.00%) 40 (20.10%) <-10 1.67E-03 0.262 Mutual exclusivity 

del 0 (0.00%) 3 (1.51%) <-10 0.646 0.865 Mutual exclusivity 

TCGA cBioPortal calculates Log ratio = Log2 based ratio of (% in altered / % in unaltered);  

p-value derived from Fisher Exact Test; q-value derived from Benjamini-Hochberg procedure. 
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Chapter 4 

Results 

4.1 Selection and mutational background of RICTOR cell line panel  

 In order to study the oncogenic effects imposed by RICTOR, we established a 

RICTOR cell line panel by first screening 57 NSCLC cell lines to detect RICTOR copy 

number variations (CNVs) by utilizing a single nucleotide polymorphism (SNP) array 

(Figure 12). We selected seven RICTOR amplified (highlighted in red arrows) and five 

non-amplified cell lines (highlighted in black arrows) that span diverse co-mutational 

backgrounds, including several lines that harbor KRAS, PTEN, PIK3CA, STK11, 

and/or EGFR mutations. The mutational background of the cell line panel used in our 

studies is summarized in Table 3. RICTOR amplified cell lines chosen were H23, 

H3122, H1792, H2009, H1650, H2172, H2126 and non-amplified cell lines were 

HCC193, H1819, A549, CALU6, and HCC44. 

 Moreover, in order to perform experiments that require extended duration for 

completion, we established several stable inducible shRICTOR cell line models 

(Figure 13). These cell lines possess puromycin resistance and inducible red 

fluorescence protein (RFP) expression for selection and visualization of transduction 

efficiency, respectively. Upon administration of doxycycline, we see a significant 

reduction in the RICTOR protein expression levels in the selected cell lines. 
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Figure 12. Selection of RICTOR cell line panel used for in vitro studies. Whole 

genome single nucleotide polymorphism (SNP) array profiling was obtained for 57 

NSCLC cell lines to determine RICTOR amplified (copy number variation (CNV ≥ 3.5) 

and non-amplified cell lines (CNV ~2). Seven RICTOR amplified cell lines (red arrows) 

and five RICTOR-non-amplified cell lines (black arrows) were selected. Copy number 

variation (CNV) values: red = amplified; black = diploid; green = deletion. 

 

 

 

 

 

 

Figure 13. Establishment of inducible shRICTOR cell line models. Several cell 

lines from the RICTOR cell line panel were used to establish tet-ON inducible 
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shRICTOR cell line models. pTRIPZ plasmid (Dharmacon) was used to stably 

transduce the indicated cell lines, and puromycin and RFP was used for positive clone 

selection. Doxycycline was used to stably knock down RICTOR in the cells, following 

dose and time optimization. Ideal knockdown was seen after doxycycline 

administration (2 µg/mL) for 96-144 hours depending on the cell line. Non-targeting 

control (NTC) was used as a doxycycline and transduction negative control, and β-

actin used as a loading control for Western blotting. 

 

Table 3. Mutational profile of RICTOR NSCLC cell line panel. 

 

 

 

 

 

  

 
Cell line KRAS EGFR STK11 PIK3CA PTEN EML4/ALK 
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 H2172 WT WT WT WT WT WT 

H2126 WT WT Mut WT WT WT 

H23 mut - G12C WT Mut WT Mut WT 

H3122 WT WT WT WT WT Mut 

H1792 mut - G12C WT WT WT WT WT 

H1650 WT Mut WT Mut Mut WT 

H2009 mut - G12A WT WT WT WT WT 

R
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n
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d

 HCC193 WT WT WT WT WT WT 

H1819 WT WT WT WT WT WT 

A549 mut - G12S WT Mut WT WT WT 

Calu6 mut - Q61K WT WT WT WT WT 

HCC44 mut - G12C WT Mut WT WT WT 



www.manaraa.com

52 
 

4.2 RICTOR signaling in RICTOR amplified versus non-amplified cell lines 

 After selecting our cell lines that carry additional secondary mutations, 

representative of the complex heterogeneity of NSCLC, we wanted to assess the 

signaling patterns associated with these cells at basal level. Figure 14 shows western 

blotting analysis of the signaling patterns seen in the amplified (shown in red) versus 

the non-amplified (shown in black) cell lines. We noticed several key 

 

 

 

Figure 14. Comparison of signaling and RICTOR expression in amplified versus 

non-amplified cell lines. (Left) Cell lysates from 12 NSCLC cell lines (amplified or 

non-amplified for RICTOR) were examined by Western blotting. Total and phospho-

specific antibodies used were for levels of RICTOR, mSIN1, p-AKT (S473), AKT, p-

PKCα (S657), p-NDRG1 (T346), NDRG1, p-mTOR (S2481), mTOR, and β-Actin as 

loading control. (Right) Quantification of relative RICTOR/β-Actin protein expression 

from densitometric analysis of western blot panel. *, P = 0.01. 
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trends that became apparent. First, RICTOR protein expression was significantly 

higher in the RICTOR amplified cell lines compared to the non-amplified cell lines. 

Densitometric analysis of relative RICTOR/β-Actin protein expression from the 

Western blot is shown on the right, and shows significantly higher RICTOR protein 

expression (*, P = 0.01). This is in concordance with our clinical analysis data from 

the TCGA and BATTLE-2 cohorts, showing that RICTOR amplification directly 

correlates with an overall higher RICTOR mRNA expression, suggesting that 

amplification of this gene drives the overexpression of the protein product. Next, we 

discovered that the expression of the mTORC2 component, mSIN1, is elevated in 

RICTOR amplified cells, suggesting increased rate of mTORC2 complex formation 

and potential activity (124). Additionally, increased mTORC2 activity markers were 

seen in our amplified cells, marked by an overall increase in p-PKCα S657 levels and 

elevated phosphorylation of N-myc downstream regulated gene 1 (p-NDRG1 T346), 

which serves as a surrogate marker for SGK1 activity (43).  Interestingly, although 

mTORC2 is predominately responsible for the phosphorylation of AKT on S473 

leading to full activation, our RICTOR amplified cell lines displayed variable degrees 

of basal AKT activity levels compared to our non-amplified cells. This could be 

attributed to the complex heterogeneity of these cell lines that induce signaling to the 

often-deregulated PI3K/AKT/mTOR pathway. Also, other AKT regulators have been 

shown to influence AKT activation such as DNA-dependent protein kinase (DNA-PK), 

ILK1, protein kinase CβII (PKCβII), PH domain leucine-rich repeat protein 

phosphatase (PHLPP), and ataxia-telangiectasia mutant (ATM), all shown to reflect 

the various cellular contexts in which AKT activity may be modulated (26, 125, 126).  
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4.3 RICTOR knockdown decreases colony formation and anchorage-

independent growth in amplified cells 

 We next sought to determine the phenotypic consequences of RICTOR 

knockdown in vitro. We utilized our established stably transduced doxycycline (doxy)-

inducible shRICTOR cell lines that are either amplified or not for RICTOR. Following 

RICTOR knockdown in our cell lines, colony formation potential was assessed after 2 

to 3 weeks and resulted in a significant reduction of colony growth in all 3 of our 

RICTOR amplified cell lines (H23, H2009, H1792), as measured by relative 

percentage of colony area compared to non-targeting control (NTC) (*, P < 0.05) 

(Figure 15, top). We did not see an effect in our non-amplified cell lines A549 and 

HCC193, suggesting that RICTOR amplifications provide a survival advantage to 

NSCLC cells driven by increased RICTOR expression. Additionally, when we 

performed an anchorage-independent growth assay to test the transformative ability 

of RICTOR by plating H23 cells on soft agarose and treating either NTC or shRICTOR 

cells with doxycycline to stably knock down RICTOR, there was complete abrogation 

of colony formation following RICTOR inhibition, again suggesting that RICTOR 

contributes proliferative properties to cells (Figure 15, bottom). 

4.4 RICTOR knockdown decreases cell proliferation in part through G0/G1 cell 

cycle arrest 

 Since we witnessed a dramatic reduction in the colony formation potential of 

cells following RICTOR knockdown, it was of interest to determine the precise role 

that RICTOR plays in regulating cell survival and/or proliferation. We therefore 

performed a cell proliferation assay by culturing cells in the presence or absence of  
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Figure 15. RICTOR knockdown decreases colony formation and anchorage-

independent growth in amplified cells. (Top) Colony formation assay of 3 RICTOR 

amplified cell lines (H23, H2009, H1792) and 2 non-amplified cell lines (A549, 

HCC193) comparing RICTOR knockdown to non-targeting control. Data are graphed 

as the mean percentage ± percent SD. (Bottom) Anchorage-independent growth 

assay in soft agar of stably transduced H23 cell line with RICTOR knockdown (A549 

serves as positive control). *, P < 0.05; n.s. = not significant. 
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doxycycline to induce RICTOR knockdown for an extended duration of time, and 

quantified total cell numbers at 4, 8, 12, and 16 days of incubation (Figure 16A). 

Results demonstrate that reducing RICTOR levels in the three cell lines tested 

markedly reduced the total cell numbers in as early as 4 to 8 days, and reduced the 

cell numbers by over 75% in all 3 cell types by day 16, yielding similar results to the 

colony formation assay (Figure 15). Moreover, we assessed whether this reduction in 

cell number was due to cell cycle changes. H23, H2009, and H1792 cell lines were 

cultured for 8 days with or without doxycycline, and stained with Propidium iodide (PI) 

for FACS cell cycle analysis. As seen in Figure 16B, RICTOR knockdown resulted in 

a slight G0/G1 cell cycle arrest in all 3 cell lines tested. Quantification of the cell cycle 

phases was performed and shows an increase of 10%, 11.7%, 4.9% G0/G1 cell cycle 

arrest in the shRICTOR cells compared to NTC cells of H23, H1792, and H2009, 

respectively (Figure 16C). Previous reports have linked RICTOR/mTORC2 to the 

regulation of the cell cycle through modulation of cyclin-D1 levels (115, 127-129). To 

test this, we performed Western blotting analysis on the H23 cell line to check for p-

AKT, p-MEK1/2, and cyclin-D1 levels (Figure 16D) following RICTOR knockdown via 

siRNA. We witnessed a slight decrease in the levels of Cyclin-D1 following RICTOR 

siRNA, providing a potential explanation of the modest increase seen in the G0/G1 cell 

cycle arrest. 
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A 

B C 

D 

Figure 16. RICTOR knockdown decreases the cell proliferative capacity. (A) 

Quantification of the relative cell number counts of shRICTOR cells relative to NTC 

cells at the indicated time points following doxycycline treatment. Complete cell 

counts were performed following 4, 8, 12, 16 days of incubation and shown as 

percentage relative to NTC. (B, C) Flow cytometry histograms and quantification of 

the phases of cell cycle in NTC versus shRICTOR cells following Propidium iodide 

(PI) staining and FACS sorting after 8 days of incubation. (D) Western blotting 

analysis of representative H23 cell line showing decreased cyclin-D1 expression. 
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4.5 RICTOR knockdown reduces the migration and invasion capacity of RICTOR 

amplified NSCLC cells  

To determine whether RICTOR plays a role in mediating migration and 

invasion of NSCLC cells, we utilized transwell in vitro migration and invasion assay 

chambers. These assays allow for the quantification of migratory and invasive cells 

that are able to move through specified pores of a filter membrane chamber placed in 

media containing a chemoattractant (e.g. FBS). After the cells were incubated for 24 

hours, the number of H23, H2009, and H1792 cells (RICTOR amplified, KRAS mutant 

cell lines) that migrated through the membranes of the chambers were significantly 

lower following RICTOR knockdown (>50%) in both serum reduced and normal serum 

conditions  (P ≤ 0.001) compared to NTC cells (Figure  17, top). Interestingly, H2172 

and H2126 (RICTOR amplified, KRAS wild-type cell lines) had a very poor basal 

migrative capacity, seen by the number of migratory control (NTC) cells quantified 

even in the absence of RICTOR knockdown (Figure 17, bottom). The results indicate 

that RICTOR knockdown reduces the migratory capability of RICTOR amplified 

NSCLC cell lines that possess KRAS co-mutations. 

 Similarly, the invasive capability was assessed using a Matrigel coated 

membrane filter chamber. After incubation of cells for 48 hours in either serum 

reduced or normal serum conditions, the number of cells that invaded through the 

membranous matrix were quantified. As seen in Figure 18 (top), H23, H2009, and 

H1792 cells had a significant reduction in the number of invasive cells following 

siRICTOR compared to NTC in both serum reduced and full serum conditions (P ≤ 

0.001).  H2009 had the most dramatic reduction in invasive ability (>80%) followed by 

H23 (>61%) and H1792 (>44%). Of note, similar to the migrative capacities, the 
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RICTOR amplified KRAS wild-type cell lines H2172 and H2126 had a very poor basal 

invasive capability, once again emphasizing the potential importance of mutant KRAS 

perhaps serving as a co-oncogenic driver with RICTOR to fuel these tumorigenic 

properties in these cell types. Taken together, these results show that RICTOR 

knockdown suppresses the migration and invasion efficiency of select NSCLC cell 

types.
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Figure 17. RICTOR knockdown reduces migration potential in RICTOR 

amplified cell lines. Cell migration was assessed using transwell chambers with 

8μm pore polyethylene terephthalate (PET) membrane filters. Cells were incubated 

in either reduced serum (0.5%) or normal serum (5%) for 24 hours. Representative 

visual images of the stained surfaces are shown. The results presented are an 

average of five random microscopic fields at 10X of the number of cells stained and 

counted. Data shown are of the means ± standard error of the means (SEM) of data 

from at least 3 independent experiments. *P = 0.001; **P < 0.001. 
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Figure 18. RICTOR knockdown reduces invasion potential in RICTOR amplified 

cell lines. Cell invasion was assessed using modified transwell chambers coated 

with growth factor reduced Matrigel with 8μm pore polyethylene terephthalate (PET) 

membrane filters. Cells were incubated in either reduced serum (0.5%) or normal 

serum (5%) for 48 hours. Representative visual images of the stained surfaces are 

shown. The results presented are an average of five random microscopic fields at 

10X of the number of cells stained and counted. Data shown are of the means ± 

standard error of the means (SEM) of data from at least 3 independent experiments. 

*P < 0.01; **P < 0.001; ns=not significant. 
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4.6 RICTOR knockdown results in reduced tumorigenicity in vivo 

Our data thus far suggests that RICTOR serves as an important oncogene 

involved in promoting various malignant phenotypes such as colony formation, 

migration and invasion. We wanted to investigate the role of RICTOR in vivo by use of 

murine xenografts engrafted with our established inducible shRICTOR lung 

adenocarcinoma cell lines H1792 and H23. There was a significant reduction in 

H1792 and H23 xenograft tumor growth following continuous induction of RICTOR 

knockdown by doxycycline administration compared to mouse control groups without 

treatment by 6 weeks (*, P < 0.05) (Figure 19 A, B). To assess the molecular 

signaling patterns following RICTOR blockade in vivo, we extracted total protein 

lysates from the tumor tissues of both the doxycycline treated and control groups from 

H1792 xenografts and performed Western blotting analysis. As seen in Figure 19C, 

RICTOR expression was significantly reduced in the +Doxy group and resulted in 

overall decreased p-AKT levels, in concordance with our in vitro results. In addition, p-

MEK1/2 and p-ERK1/2 levels were elevated in the RICTOR knockdown tumors, 

indicative of the compensatory mechanisms seen in vitro in our KRAS mutant cell 

lines. Taken together, genetic blockade of RICTOR is associated with growth 

inhibition in vivo, further supporting RICTOR’s role as an oncogenic driver in NSCLC. 
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Figure 19. RICTOR knockdown using RICTOR shRNA results in reduced 

tumorigenicity in vivo. (A, B) Athymic nude mice were inoculated with H1792 or 

H23 shRICTOR cell lines and were fed with either doxycycline (+Doxy, 600mg/kg) or 

control diet (-Doxy). Tumor volumes were measured twice weekly. Data points are 

presented as the mean tumor volume ± SEM. Representative images of xenograft 

tumors from each group before tumor harvesting are shown. *, P = 0.01; **, P < 0.01. 

(C) Lysates extracted from H1792 tumor xenografts were subjected to Western blot 

analysis with the indicated antibodies, showing RICTOR knockdown. 
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Chapter 5 

Results 

5.1 Compensatory MAPK signaling activation following RICTOR inhibition in 

KRAS mutant settings 

Our clinical analysis of RICTOR-altered cases from the TCGA dataset 

demonstrated an enrichment of MAPK pathway alterations (Figure 11). Thus, we 

wanted to determine possible changes in the cell signaling patterns of the 

RAS/RAF/MEK pathway affected by RICTOR. We performed knockdown studies via 

siRNA in several cell lines from our panel that harbor either RICTOR amplifications 

and/or KRAS mutations. Western blot analysis indicated that RICTOR siRNA 

effectively knocked down RICTOR protein expression levels in the respective samples 

(Figure 20A). Interestingly, siRICTOR treatment in RICTOR amplified NSCLC cell 

lines that harbor KRAS mutations (H23, H2009, H1792) resulted in a compensatory 

increased activation of the MAPK pathway seen by elevated levels of phosphorylated 

MEK (p-MEK1/2) compared to non-targeting control (NTC) treatment (Figure 20A). As 

expected, we saw a reduction in the full activation of AKT S473 (p-AKT) in these cells 

after RICTOR knockdown, associated with reduced mTORC2 activity. To determine if 

this compensation occurs specifically in KRAS mutant settings, we performed 

siRICTOR treatment on RICTOR amplified but KRAS wild-type cell lines (H1650, 

H2126, H2172), and results confirmed there was no significant increase in the p-

MEK1/2 levels. Of note, p-AKT levels were not reduced following RICTOR inhibition in 

H1650 (EGFR, PIK3CA, PTEN mutant) and H2126 (LKB1 mutant), which could be a 

result of their secondary mutations known to stimulate the PI3K/AKT/mTOR pathway. 
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Interestingly, a similar compensatory MAPK pathway activation was seen in RICTOR 

non-amplified but KRAS mutant cell lines (A549, HCC44), but not in KRAS wild-type 

cell lines (H1819, HCC193), suggesting that RICTOR amplification is not necessary 

for driving this compensatory mechanism. 

To further test our hypothesis that mutant KRAS is important in mediating this 

compensatory mechanism following RICTOR blockade, we performed double 

knockdown studies via siRNA targeting RICTOR and KRAS alone, or in combination. 

As seen in Figure 20B, in two of our RICTOR amplified KRAS mutant cell lines (H23, 

H1792), Western blotting results of siRICTOR showed an elevated activation of p-

MEK1/2, whereas siKRAS alone actually reduced the p-MEK1/2 levels and hence 

decreased MAPK pathway activity. When concomitant targeting of siRICTOR and 

siKRAS occurred, there was no increase in p-MEK1/2 levels, suggesting that there is 

an important interplay between RICTOR and mutant KRAS. Collectively, these 

findings suggest that there is a fine tuned balance of pro-survival signaling 

mechanisms in RICTOR/KRAS-altered settings, such that when the RICTOR pathway 

is blocked the cells tip the pro-survival balance to the parallel oncogenic MAPK 

pathway mediated by mutant KRAS, through increased activation of p-MEK1/2 

(Figure 20C). These data expose a unique therapeutic vulnerability in this specific 

setting where dual pathway targeted therapy approaches could be beneficial.  
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Figure 20. Compensatory MAPK signaling activation following RICTOR 

knockdown in KRAS mutant settings. (A) A panel of 6 RICTOR amplified and 4 non-

amplified NSCLC cell lines that are KRAS wildtype or mutant were transfected with 

siRNAs specific for RICTOR or scrambled negative control for 72 hours and cell 

lysates were analyzed by Western blotting for the specified proteins. (B) H23 and 

H1792 cells were transfected with siRNAs specific for RICTOR, KRAS, or scrambled 

negative control for 72 hours and cell lysates were analyzed by Western blotting for 

the specified proteins. (C) Potential model of compensatory mechanism between 

RICTOR and mutant KRAS. 

C 
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5.2 Compensatory MEK1/2 activation following RICTOR knockdown may be 

mediated through de-repression of inhibitory CRAF phosphorylation 

We next wanted to elucidate a potential mechanism behind the compensatory 

upregulation of p-MEK1/2, which occurs following RICTOR inhibition. We treated our 

H23 cell line (RICTOR amplified, KRAS mutant) with either siRNA directed against 

RICTOR or various mTOR/MAPK pathway inhibitors targeting mTORC1 (everolimus), 

mTORC1/2 (AZD2014), MEK1/2 (AZD6244, selumetinib), or a combination of 

AZD2014 and AZD6244 (Figure 21A). Whole-cell lysates were then extracted and 

probed with phosphorylation-specific antibodies for various PI3K/AKT/mTOR and 

MAPK pathway activation markers and Western blotting analysis was performed. In 

first assessing the full activation of AKT (p-AKT S473) under the different treatment 

conditions, siRICTOR treatment reduced the p-AKT levels as expected, with similar 

results seen after treatment with the dual mTORC1/2 inhibitor, AZD2014. Treatment 

with the mTORC1 inhibitor everolimus, however, increased the activity of AKT as 

previously reported (130, 131), most likely through attenuation of upstream feedback 

inhibition of IGF-1 receptor. To further confirm the specificity of the drugs and the 

subsequent downregulation of mTORC1 pathway activity, the p-S6RP levels were 

measured and were shown to be completely inhibited with everolimus or AZD2014 

treatment, but unchanged with the selective MEK1/2 inhibitor AZD6244, confirming 

that each drug was working selectively and inhibiting its respective pathway. 

Additionally, to reconfirm the compensatory activation of p-MEK1/2 after 

RICTOR inhibition, treatment of H23 cells with siRICTOR significantly increased the 

p-MEK1/2 levels compared to parental or NTC cells, as previously shown (Figure 

20A, B). Moreover, when AZD6244 was used to block MEK1/2 signaling, we saw a 
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significant reduction in the downstream p-ERK1/2 levels, reinforcing the specificity 

and downregulation of the MAPK pathway activity with this drug. Expectedly, there 

was also a dramatic increase in the p-MEK1/2 levels, as previously reported (132, 

133). This is because selumetinib does not disrupt the phosphorylated activation loop 

sites of MEK1/2, and therefore, treatment with this MEK inhibitor relieves a negative 

feedback loop mediated through ERK1/2. When p-ERK1/2 levels decrease, the relief 

of the feedback loop allows stronger activation of upstream components and 

ultimately reactivates phosphorylated MEK1/2 levels.  

Moreover, we evaluated the effects of the treatments on the levels of p-CRAF 

S259, a site previously reported to be an inhibitory phosphorylation mediated directly 

by AKT (49, 54, 55). Our hypothesis was that the compensatory activation of p-

MEK1/2 following RICTOR knockdown is mediated through de-repression of the 

inhibitory CRAF phosphorylation as a result of decreased activation of AKT, leading to 

a more active CRAF involved in transduction of mutant KRAS signaling (Figure 21A). 

A proposed model of this interaction is illustrated in Figure 21C. Densitometric 

quantification of p-CRAF shows that siRICTOR decreased p-CRAF S259 by an 

average of 34% compared to parental and NTC H23 cells (Figure 21B). Conversely, 

the specific mTORC1 inhibitor, everolimus, did not yield a significant reduction, likely 

due to the hyperactivation of p-AKT; however, the combination of everolimus with 

siRICTOR had an average 43% reduction of p-CRAF S259, similar to siRICTOR 

alone. Interestingly, treatment with the dual mTORC1/2 inhibitor, AZD2014, only 

decreased the p-CRAF levels by an average of 23%. This could suggest that RICTOR 

may have a more important interplay with AKT, independent of its interaction with 

mTORC2, in modulating AKT activity and ultimately regulating CRAF activation 
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through mutant KRAS. Alternatively, the lower reduction of p-CRAF seen by AZD2014 

could be due to the specificity of AZD2014’s inhibitory mechanism on the mTOR 

kinase directly, and not RICTOR, suggesting that there is a unique and specific 

interplay between RICTOR and KRAS/CRAF. This also brings forward the idea of 

developing a specific RICTOR inhibitor.  

Additionally, in comparing the various targeted drugs and their effects on cell 

viability, apoptosis was measured via the detection of cleaved PARP levels (Cl-PARP) 

across the panel of drug treatments. In concordance with our proposed hypothesis 

that a dual pathway inhibition strategy targeting both, the mTOR and MAPK 

pathways, is an effective solution in RICTOR/KRAS-altered molecular settings, our 

results here show that the greatest apoptotic induction is seen when using AZD2014 

in combination with AZD6244 (Figure 21A). When RICTOR alone is knocked down, 

we do not see significant upregulation of cleaved PARP even though p-AKT levels 

decrease, suggesting that the compensatory activation of the MAPK pathway, through 

upregulated p-MEK1/2, is allowing the cells to sustain viability by promoting alternate 

survival mechanisms, as evidenced in section 5.3 below.  
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Figure 21. Compensatory MEK1/2 activation following RICTOR knockdown 

may be mediated through de-repression of inhibitory CRAF phosphorylation. 

(A) H23 cells were treated with the indicated siRNAs for a total of 72 hours and 

compounds were administered for 24 hours (all at 1µM, except AZD6244 at 5µM) 

before cells were harvested. Western blot analyses was performed and 

densitometric quantification done using Image Studio Lite 5.0 software and bands 

were normalized to the respective β-Actin control bands. (B) Percent inhibition of p-

CRAF S259 plotted per sample relative to the average of Parental and NTC 

samples. (C) Model illustrating the proposed mechanism of p-MEK1/2 activation 

following RICTOR knockdown in KRAS mutant cells. 

A B 

C 
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5.3 Human p-MAPK array reveals RICTOR knockdown affects the activity of 

several mediators of cellular stress and survival pathways. 

 We next subjected our RICTOR amplified, KRAS mutant cell line, H23, to a 

human p-MAPK array which allows us to monitor the phosphorylation levels of 26 

kinases. We treated H23 cells with NTC or siRICTOR for 72 hours, and following 

whole-cell lysis, incubated the lysates with the phosphorylation specific array. Figure 

22A shows differences of band intensities (in duplicates) for 26 different kinases 

involved in the major MAPK pathways. Western blotting was performed separately on 

the NTC and siRICTOR lysates to confirm effective RICTOR knockdown (Figure 22B). 

Only kinases that were differentially activated (phosphorylated) were marked with 

corresponding numbers and ultimately quantified to evaluate difference in activity 

(Figure 22C). Densitometric quantification found several MAPK-related kinases that 

were downregulated following RICTOR knockdown. Notably, we found decrease in 

phosphorylation levels of CREB (S133), HSP27 (S78/82), and p38a (T180/Y182). 

Interestingly, these MAPK pathway effectors are found to play broad roles as key 

mediators of cellular stress response, survival, and proliferation (47, 134-136). These 

results open several possible mechanisms by which RICTOR, either through an 

mTORC2-dependent or independent process, is able to contribute to the oncogenic 

properties of NSCLC revealed by our work, by mediating the MAPK pathway(s). 

Future experiments are still needed to fully decipher these potential mechanisms.  
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Figure 22. Human p-MAPK array reveals RICTOR is linked to several 

mediators of cellular stress and survival. (A) Whole-cell extracts from H23 cells, 

treated with a NTC or siRICTOR for 72 hours, were incubated with the Human p-

MAPK array, and phosphorylation status of 26 kinases was captured from a 5 

minute exposure to X-ray film. (B) Western blotting analysis of lysates used for 

array shows knockdown efficiency of siRICTOR. (C) Densitometric quantification of 

selected phospho-kinases (in duplicates) marked by corresponding numbers. 
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Chapter 6 

Results 

6.1 RICTOR knockdown enhances the pharmacologic efficacy of MAPK pathway 

inhibition in RICTOR/KRAS-altered NSCLC cell lines 

To exploit the compensatory MAPK pathway activation seen following RICTOR 

signaling inhibition, we evaluated the effect of blocking the MEK-ERK signaling 

pathway via pharmacologic agents alone or in combination with genetic RICTOR 

blockade, in specific KRAS co-mutational settings in vitro. We tested two currently 

available allosteric MEK1/2 inhibitors, selumetinib (AZD6244) and trametinib 

(GSK1120212), either alone or in combination with shRICTOR treatment in three 

RICTOR amplified, KRAS mutant shRICTOR inducible cell lines via MTT assay 

(Figure 23A). Pharmacologic disruption of signaling in the MEK-ERK pathway by 

selumetinib (5 µM) or trametinib (0.05 µM) alone rendered all three cell lines resistant 

(> 50% viability) at the selected doses. However, the response was more marked in 

the presence of shRICTOR in combination with MEK1/2 targeted therapy, seen by a 

significant reduction in cell viability compared to either inhibitor alone (P < 0.0001). 

We next checked the signaling effects induced by the MEK1/2 inhibitors with or 

without RICTOR knockdown by Western blotting analysis in the representative H23 

cell line (Figure 23B). Single treatment with either MEK inhibitors or combined with 

shRICTOR suppressed AKT and MAPK signaling pathways (seen by reduced p-AKT 

and p-ERK levels, respectively) in a dose-dependent manner. In concordance with the 

aforementioned cell viability results, there was a substantial increase in the cleaved 

PARP (cl-PARP) levels detected in samples treated with concomitant MEK inhibitors 
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and shRICTOR compared to MEK inhibition alone, signifying reduced cell viability as 

a result of increased apoptosis.  
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Figure 23. RICTOR knockdown enhances the pharmacologic efficacy of 

MAPK pathway inhibition in RICTOR/KRAS-altered NSCLC cell lines.  

(A) Inducible shRICTOR NSCLC cell lines were cultured in the presence or 

absence of 2μg/mL doxycycline to induce shRICTOR knockdown, alone or in 

combination with either selumetinib (AZD6244, 5μM) or trametinib (0.05μM). After 

7 to 10 days of treatment, cell viability was measured by MTT assay and compared 

between shRICTOR alone and in combination with MEK1/2 inhibitors. Separate 

wells were stained with crystal violet on the same day to visualize and complement 

cell viability data. Data are graphed as the mean percentage ± percent SD. ***, P < 

0.0001. 

(B) Western blot analysis of inducible H23 cell line treated with increased doses of 

selumetinib (left, 1, 5, 10 μM) or trametinib (right, 5, 10, 100 nM) alone or in 

combination with 2μg/mL doxycycline to induce shRICTOR knockdown for a total 6 

days. Total and phospho-specific antibodies used were for levels of RICTOR, p-

AKT (S473), AKT, p-ERK1/2 (T202/Y204), ERK1/2, cleaved-PARP, PARP, and β-

Actin as loading control. 
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6.2 Combined mTORC1/2 and MEK inhibition is an effective therapeutic 

approach in RICTOR/KRAS-altered settings and results in synergistic anti-

tumor effects in vitro 

We next wanted to investigate the efficacy of our dual pathway inhibition 

approach by use of two currently available pharmacologic inhibitors either alone or in 

combination across several RICTOR amplified or non-amplified NSCLC cell lines that 

carry various secondary mutations in the PI3K/AKT/mTOR and/or MAPK pathways. 

We performed an MTT assay after treating cells with selumetinib and/or the dual 

catalytic mTORC1/2 inhibitor AZD2014 (currently in phase II clinical trials) at the 

specified doses (Figure 24). In H23, H2009, and H1792 (RICTOR amplified, KRAS 

mutant) cell lines, concomitant targeting of mTORC1/2 and MEK resulted in 

approximately 75% reduction of cell viability in all three cell types. Of note, H23 also 

harbors LKB1 and PTEN mutations, which could explain why this cell line is more 

resistant to either single agent treatment when compared to H2009 or H1792. We 

then tested our inhibitors in two RICTOR non-amplified cell lines, HCC44 and 

HCC193, which are KRAS mutant or wild-type, respectively. In HCC44 cells, 

combined selumetinib and AZD2014 treatment decreased cell viability by over 75%; 

however, HCC193 cell lines were relatively resistant to either agent alone or the 

combination (> 50% cell viability). To further confirm that this dual pathway inhibition 

is most effective specifically in KRAS co-mutant settings, we used the isogenic human 

bronchial epithelial cell lines (HBECs) previously described (137, 138), that either 

have KRAS wild-type (HBEC3-KT) or KRAS G12C mutation (HBEC3-KT-G12C). Our 

results indicated that in concordance with the aforementioned data in NSCLC cell 

lines, HBEC3-KT cells with KRAS mutation are significantly more sensitive to the dual 



www.manaraa.com

77 
 

pathway blockade of selumetinib with AZD2014 (~75% reduction in cell viability) 

compared to the KRAS wild-type cells which were more resistant (~50% viability).  

In addition, we assessed whether the combination therapy of both drugs 

resulted in synergistic, additive, or antagonistic effects across a range of therapeutic 

doses by MTS assay. H23, H2009, H1792 (RICTOR amplified, KRAS mutant) cell 

lines were treated with various concentrations of AZD2014 (0.024-12.5μM) and a 

fixed set of selumetinib doses (2.3, 4.6, 9.3, or 18.7μM) for 96 hours (Figure 25). We 

calculated the combination index (CI) values based on the previously described Chou-

Talalay model (139) using ComboSyn software (ComboSyn Inc, Paramus, NJ). The 

CI parameters used were: CI = 0-0.9, synergism; CI = 0.9-1.1, additive effect; CI > 

1.1, antagonism. In all three representative cell lines, optimal drug dose combinations 

that impose synergistic effects were found. H23 showed the highest level of 

synergism in the range of AZD2014 (0.024-0.781μM) combined with selumetinib (2.3 

or 4.6 μM), whereas increasing the AZD2014 and/or selumetinib combination doses 

outside of these ranges resulted in a loss of synergy and caused an additive or 

antagonistic effect. In H2009, we found consistent synergism across most of the 

combination dose ranges used, and in H1792 the synergistic and/or additive effects 

were observed in the range of AZD2014 (0.195-6.25μM) combined with selumetinib 

(2.3-18.7μM). Collectively, these findings suggest that a dual pathway inhibition 

approach is warranted in specific NSCLC settings where RICTOR/KRAS alterations 

exist, and that careful consideration should be given when combination dosing is 

performed to render most effective synergistic anti-tumor effects.  
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Figure 24. Combined mTORC1/2 and MEK1/2 inhibition is an effective 

therapeutic approach in RICTOR/KRAS-altered in vitro settings.  

Five NSCLC cell lines (3 RICTOR amplified (red), 2 RICTOR-non-amplified 

(blue)) and two immortalized human bronchial epithelial cell lines (HBECs, black) 

were treated with DMSO (control), selumetinib (1 μM), AZD2014 (0.1 μM), or the 

combination selumetinib (1 μM) with AZD2014 (0.1 μM). Mutation status of 

KRAS, LKB1, PTEN, and EGFR are shown below each cell line. After 72 hours 

of treatment, cell viability was compared to control DMSO cells and measured by 

MTT assay. Data are graphed as the mean percentage ± percent SD. **, P < 

0.01; ***, P < 0.0001.  
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Figure 25. AZD2014 and selumetinib act synergistically to block mTOR and 

MAPK pathway signaling in vitro.  

Three NSCLC (RICTOR amplified, KRAS mutant) cell lines were incubated with 

increasing concentrations of AZD2014 (0.024-12.5μM) and a fixed dose of 

selumetinib (0, 2.3, 4.6, 9.3, 18.7 μM) for 96 hours. Controls were treated with 

DMSO only. Cell viability was analyzed by MTS assay. Data are graphed as the 

mean percentage ± percent SD. Combination index (CI) values were calculated 

using ComboSyn software (ComboSyn Inc, Paramus, NJ). The CI parameters 

used were: CI = 0-0.9, synergism; CI = 0.9-1.1, additive effect; CI > 1.1, 

antagonism. 
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6.3 Comparative effects of mTORC1/2 and MEK1/2 pathway inhibition in vivo 

 To determine whether the synergistic effects seen in vitro translated into anti-

tumorigenic effects in vivo, we utilized our stably transduced inducible shRICTOR cell 

line H1792 (RICTOR amplified, KRAS mutant) to subcutaneously establish tumor 

xenografts in mice. Once tumors reached a palpable size of 150 to 200 mm3, the 

animals were randomized into five treatment arms: vehicle (1% tween-80, bid), 

selumetinib (25mg/kg, bid), selumetinib (25mg/kg, bid) + doxycycline feed 

(600mg/kg), AZD2014 (15mg/kg, qd), and selumetinib + AZD2014 (equivalent 

dosages used as per individual inhibitor treatments). Dose administration via oral 

gavage was performed for a total of 22 days continuously, with tumor volumes and 

mouse body weights recorded twice weekly (Figure 26 A, B). 

 Results show that in comparison to the vehicle (control) group, mice receiving 

selumetinib with AZD2014 had the most enhanced antitumor effects compared to 

single-agent treatment groups. Similarly, we saw a significant reduction of tumor 

growth in the selumetinib with shRICTOR (+Doxy) treatment arm compared to control, 

although the utilization of the abovementioned combination drugs still had a more 

pronounced reduction in tumor volume. Interestingly, in concordance with our in vitro 

H1792 cell viability MTT data (Figure 24), selumetinib treatment alone resulted in an 

increased reduction of cell viability/tumor growth compared to single agent AZD2014 

treatment, suggesting that this particular KRAS mutant setting (KRASG12C) is more 

sensitive to MEK1/2 inhibition than mTORC1/2, despite having amplification of 

RICTOR present. Furthermore, to determine whether these effects were seen without 

detrimental consequences on the health and well-being of the experimented animals, 

body weight of animals was measured several times a week (Figure 26B). No 
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significant loss of body weight or visible signs of declined health were witnessed 

during the duration of any of the treatments. 

 Following the last treatment dose, tumors were extracted after 3 hours 

proceeding the final dose administration, and tumor lysates were prepared as 

described in materials and methods section. Representative samples from each 

treatment arm were subject to Western blotting analysis (Figure 26C). Results 

revealed that the treatments alone and the combination inhibited their direct targets of 

each inhibitor. The treatment groups incorporating selumetinib effectively blocked 

downstream p-ERK1/2 signaling, AZD2014 had a marked reduction in the 

downstream mTORC1/2 effectors p-AKT, p-S6RP and p-4EBP1, and shRICTOR 

induction with doxycycline showed a reduction in the total RICTOR protein levels. 

Collectively, these findings suggest that AZD2014 in combination with selumetinib 

result in significant anti-tumor effects mediated through mTORC1/2 and MEK dual 

pathway inhibition, and is an effective therapeutic strategy in RICTOR/KRAS-altered 

NSCLC. 
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Figure 26. Selumetinib in combination with shRICTOR or AZD2014 results 

in the strongest anti-tumor activity in vivo. 

(A) Athymic nude mice were inoculated subcutaneously with the inducible H1792 

shRICTOR cell line. Once tumor volumes reached an average of 150 to 200 

mm3, mice were randomized to each treatment group and given the respective 

treatments via oral gavage daily for a total of 22 days. Tumor volumes were 

measured twice weekly, and data points are presented as the mean tumor 

volume ± SEM. Colored asterisks represent significant difference of that 

treatment from a different treatment resembled by its respective line color. (*, P < 

0.05; +, P < 0.01). (B) Average body weight of mice is displayed for each 

treatment arm, and measured twice weekly. (C) Western blot analysis showing 

the levels of indicated proteins in tumor lysates harvested 3 hours after last drug 

treatment on day 22. 
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Chapter 7 

Discussion, Conclusions, and Future Directions 

 Lung cancer is the leading cause of cancer-related mortality worldwide, with a 

dismal five year survival of less than 16% and over 1.5 million deaths annually (140). 

Despite improvement in early detection strategies and standard treatment options, it 

continues to have a poor prognosis. What were once considered a single disease 

entity, lung tumors are now comprised of discrete genetically and clinically distinct 

subtypes. NSCLC is the most prevalent type of lung cancer, and the last decade has 

seen significant effort invested in the advent of rapid genomic profiling that led to 

development of molecular-targeted therapy that inhibit key oncogenic drivers such as 

EGFR, ALK, and RAF, resulting in dramatic responses in patients (5). However, even 

though responses are seen initially, these targeting agents rarely promote complete or 

durable antitumor effects especially in unselected patients, leading to acquired 

resistance mechanisms and relapse. Further, effective therapeutic options still lack for 

lung tumors driven by other key mutations such as in oncogenic KRAS (~30%) and 

those with untargetable oncogenic drivers that are yet to be discovered (123, 141). 

Moreover, it is now evident more than ever that clinical trials performed in the 

absence of sufficient molecular and genetic stratification lead to poor response rates 

in patients.  

In this study, we aimed to identify novel actionable genetic alterations in lung 

cancer by utilizing genomic profiling data from the BATTLE-2 clinical trial that targets 

advanced stage chemorefractory NSCLC patients. We identified RICTOR alterations 

(amplifications and/or mutations) to be present in 17.4% (16/92) of advanced stage 
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NSCLC patients, including 11.9% amplifications (11/92) and 5.4% mutations (5/92). 

Mutations in the RICTOR gene have not been previously characterized, and thus the 

precise functional significance of these mutations is yet to be determined. To date, 

only one correlative study was found from literature searches highlighting a specific 

RICTOR polymorphism (rs6878291) associated to clinical benefit and that serves as 

an independent risk factor for progression-free survival in a cohort of Chinese NSCLC 

patients treated with platinum-based chemotherapy (142) . However, the exact 

functional significance of this SNP is unknown and further validation is needed in an 

independent cohort to draw any major conclusions from this study. Interestingly, 

mutations in the RICTOR gene identified from the BATTLE-2 patients were all 

mutually exclusive from RICTOR gene amplifications. We also surveyed early-stage 

lung adenocarcinoma cases using the TCGA dataset, and identified a total 13.4% 

(31/230) of RICTOR-altered cases, which included 10% amplifications (23/230) and 

5.2% mutations (12/230). When we utilized the cBioPortal dataset analysis tool to 

identify the frequency of RICTOR alterations across numerous different tumor types, 

we found that alterations in this gene are also found in other cancers and are not 

exclusive to lung tumors. However, the highest frequency of alterations was found in 

NSCLC, particularly in lung adenocarcinoma. Further, in contrast to our advanced 

stage BATTLE-2 cases, we identified 4 early stage cases in the TCGA dataset that 

had concomitant RICTOR gene amplifications and mutations. These data might 

suggest that advanced-stage tumors do not require concomitant alterations in the 

RICTOR gene to drive the involved pro-tumorigenic processes, whereas some early 

stage tumors require concomitant mutations. Also, it is not clear which alteration 

type—RICTOR amplification or mutation—is more important in the oncogenic process 
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or in terms of response to specific targeted therapies. An example of the importance 

of this difference was shown in a report analyzing mutations versus amplifications of 

the gene, KIT, in melanomas, and found that patients with KIT mutations had 

responses to the tyrosine kinase inhibitor, imatinib, whereas those with amplifications 

had no response (143). As noted above, a closer examination of the functional 

significance of these mutations is required to fully decipher their implications in 

NSCLC tumorigenesis. Experimental approaches such as site-directed mutagenesis 

or targeted CRISPR-Cas9 approaches in vitro can be utilized to aid in such studies. 

Gene amplifications refer to the increase in copy number levels of a gene 

within the genomic DNA of a cell. Amplification of a gene typically involves the 

overexpression of the gene product, consequently leading to selective advantages for 

tumor cell growth. We were interested to evaluate the correlation between RICTOR 

amplification and RICTOR gene expression in our two datasets. Our findings show 

that there was a significant direct correlation between RICTOR gene amplification and 

RICTOR mRNA expression in the early stage TCGA dataset, and a trend seen in the 

advanced stage BATTLE-2 lung adenocarcinoma cases. It is important to note that 

when we performed this analysis including all NSCLC subtypes from the BATTLE-2 

cases (total of 159 cases that were subjected to DNA NGS profiling), there was 

statistical significance of direct correlation between RICTOR gene amplification and 

RICTOR mRNA expression (data not shown). These differences in significance could 

be due to either the smaller sample size of RICTOR amplified lung adenocarcinoma 

cases being a limitation factor, or that in other NSCLC subtypes (e.g. small-cell lung 

carcinomas), increased RICTOR copy number levels definitively drive the mRNA 

expression of RICTOR in those tumor histotypes. Another possibility could be 
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differences in epigenetic and micro-RNA (miRNA) regulatory mechanisms in these 

tumors. One such example is a study that found that DNA hypermethylation silences 

miR-218 in oral squamous cell carcinoma, which directly targets RICTOR and 

suppresses its expression and activity (112). Another study showed that the 

downregulation of miR-153 resulted in increased RICTOR mRNA and protein 

expression and tumorigenic activity, explaining the upregulation of RICTOR seen in 

human glioma tissues and cell lines (144). 

We next wanted to determine the association of RICTOR alterations to 

prognosis using our clinical datasets. Since we have mutation data from our BATTLE-

2 and TCGA datasets, we checked whether there is association between 

dichotomizing RICTOR amplified, mutated, or altered (combining amplified/mutated) 

cases versus non-altered cases, and correlated these parameters to overall survival 

and progression-free survival (data not shown). Results yielded a lack of statistical 

significance between all these analyses, most likely due to inadequate statistical 

power as a result from the limited number of mutant cases. Since we found an overall 

direct correlation between RICTOR amplification and mRNA expression, we next 

analyzed whether levels of RICTOR mRNA expression associated to outcome in our 

datasets. For this analysis, in addition to our BATTLE-2 (advanced stage) and TCGA 

(early stage) cases, we utilized the PROSPECT cases, a dataset our laboratory 

possesses, which is comprised of early stage surgically resected lung 

adenocarcinoma tumors, in which we have mRNA expression and clinical outcome 

data. We performed a univariate overall survival analysis of RICTOR mRNA 

expression using the Cox proportional hazards model. We found a significantly worse 

overall survival in patients with advanced stage lung adenocarcinoma in the BATTLE-
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2 cases. We also noted poor prognosis in our early stage surgically resected lung 

adenocarcinoma cases from the PROSPECT dataset; however, no significance was 

seen in patients from the TCGA dataset. One possible explanation could be that in 

heavily pre-treated advanced stage cases (BATTLE-2), RICTOR serves a more 

dominant role in driving malignant phenotypes of tumors and has an important 

interplay with co-oncogenes such as KRAS, ultimately leading to a worse survival of 

patients due to the severity of mutational burden. Similarly, although the PROSPECT 

cases are still considered early stage cases relative to the BATTLE-2 cohort, these 

tumors are more advanced compared to the TCGA lung adenocarcinomas. On the 

contrary, in the TCGA cases, the mutational load is lower due to the early stage and 

less treatment exposure, and therefore RICTOR serves more as a secondary driver 

and requires, in some cases, to harbor concomitant mutations and amplifications in 

RICTOR to perhaps drive cancer progression. Although the true prognostic 

implications of RICTOR remain unclear in the context of NSCLC, a more expanded 

analysis of larger study cohorts may provide more conclusive information on 

RICTOR’s predictive and prognostic role. To date, RICTOR’s association with 

prognosis has been proposed in some tumor types with differing conclusions. For 

instance, RICTOR mRNA and protein expression was determined to be an 

independent prognostic factor for endometrial carcinoma (145). Also, RICTOR mRNA 

expression was identified as an independent prognostic indicator for disease-free 

survival in patients with hepatocellular carcinoma (146). Conversely, elevated 

RICTOR mRNA expression was found in normal breast tissues, lower tumor grade, 

and correlated with a significantly better disease-free and overall survival (147). 
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A recent study by Cheng et al. highlighted RICTOR amplification as a distinct 

subset of lung cancer patients, and reported RICTOR amplifications in 8.4% of lung 

adenocarcinomas from an independent cohort (Foundation Medicine, Inc.) (117). Of 

these, 11% of the cases harbored RICTOR amplification as the sole potentially 

actionable target out of a targeted gene panel. In concordance with our data, the 

study highlighted the oncogenic role of RICTOR by showing that RICTOR inhibition 

resulted in reduced cancer cell growth and cell survival in NSCLC cells amplified for 

RICTOR. Moreover, their data indicated that dual mTORC1/2 inhibition was effective 

against RICTOR amplified lung cancer cells. They further reported one patient 

(harboring RICTOR amplification as the single actionable genomic alteration found) 

that underwent treatment with dual mTORC1/2 therapy, and had over 18 months of 

tumor stabilization. Although the strategy of dual mTORC1/2 therapy for RICTOR 

amplified cases seems reasonable in settings where the only major oncogenic 

actionable driver is RICTOR, our data presented here suggest that this treatment 

strategy may not be as effective in lung tumors where other genomic aberrations are 

present.  

To gain insight into the co-mutational landscape that exists in RICTOR-altered 

cases, we utilized the cBioPortal platform to survey the TCGA dataset for enrichment 

of specific pathway alterations that are known to be deregulated in lung cancers. We 

examined the frequency of alterations (mutations and/or copy number changes) in 

genes known to mediate key pathways, including tyrosine kinase (RTK) signaling, 

mTOR signaling, MAPK signaling, and oxidative stress response. Of great interest, 

we found co-mutational enrichment of alterations in genes involved in the oncogenic 

MAPK pathway, including KRAS, NF1, BRAF, and CRAF. The elevated frequency of 
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these co-mutations suggested that RICTOR could potentially serve as an important 

co-oncogenic driver in lung cancer progression in specific molecular settings. KRAS 

has been an orphan target, and numerous attempts in its direct and even indirect 

targeting have failed (88). Therefore, a great shift in focus over the years has 

occurred to study and potentially inhibit downstream or parallel effector pathways and 

molecules. Additionally, characterizing the genomic landscape of KRAS mutant lung 

tumors is critical to better determine co-driver alterations that when identified and 

appropriately targeted, can re-sensitive RAS-driven tumors to the given therapeutic 

modalities. These results tailored our experimental efforts and focus on characterizing 

the significance of RICTOR in the context of NSCLC, specifically in a KRAS co-

mutational setting 

Our in vitro cell line models were carefully selected to reflect the heterogeneity 

of NSCLC and specific mutations in the MAPK pathway. Cell lines selected were 

either RICTOR amplified or non-amplified, and included various co-mutations in 

KRAS, PTEN, PIK3CA, STK11, and/or EGFR. Similar to our clinical findings that 

RICTOR amplified cases directly correlated with RICTOR mRNA expression, we 

found that our RICTOR amplified cell lines had a significantly higher RICTOR protein 

expression compared to non-amplified cell lines. This is supportive of the idea that 

amplification of this gene drives the overexpression of the protein product, perhaps 

leading to increased malignant effects. 

Since RICTOR’s roles in tumorigenesis are actively emerging, both dependent 

and independent of the mTORC2 complex, we sought to characterize the phenotypic 

consequences of modulating the levels of RICTOR in our in vitro cell line panel to 

better understand RICTOR in the context of NSCLC. We found that RICTOR 
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knockdown significantly reduces the clonogenic and anchorage-independent growth 

of RICTOR amplified cells. In assessing its role on the tumorigenic potential in a more 

physiologically relevant in vivo settings, we found that knocking down RICTOR in 

H1792 and H23 (RICTOR amplified, KRAS mutant) xenografts significantly abrogated 

the tumorigenicity of these cells in nude mice. These results are in concordance with 

other studies showing that in various tumor types, including gliomas, bladder, ovarian, 

and prostate cancers, RICTOR contributes oncogenic properties (103, 117, 148, 149). 

Moreover, when we performed migration and invasion assays, we found that 

RICTOR knockdown in RICTOR amplified cell lines significantly abrogated the 

migrative and invasive capacity of these cells. RICTOR’s role in migration and/or 

invasion has been previously reported. For example, several reports have shown that 

in glioma and bladder cancer cell lines, the genetic silencing of RICTOR significantly 

reduced cell growth, migration and invasion (103, 148). In addition, Lamouille et al. 

have shown that the mTORC2 complex is an essential downstream mediator of TGF-

β signaling, affecting cellular migration (through regulation of focal adhesions in 

response to paxillin expression), invasion (through induction of MMP9 expression), 

and cancer cell dissemination (through EMT-associated cytoskeletal and gene 

expression changes) (150). Moreover, the RICTOR/mTOR complex has been 

reported to modulate the activity of PKCα in regulating the actin cytoskeleton to impair 

cell motility (41); however, this mechanism could be cell type specific, as another 

study was unable to determine similar findings upon treatment with classic PKC 

inhibitors to reverse this phenotype (151). Instead, their findings suggested that 

RICTOR interacts and specifically regulates PKCζ activation to induce cancer cell 

metastasis in an mTORC2-independent manner (151). On the contrary, Das et al. 
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reported that suppression of RICTOR actually resulted in an increased invasive 

capacity of glioma cells by enhancing the expression of MMP9 through a RAF1-MEK-

ERK mediated pathway (152). Perhaps one of the more convincing pieces of 

evidence shedding light on RICTOR’s independent role on regulating cell migration 

was elucidated in a study showing that loss of RICTOR leads to the induction of 

RhoGDI2, which disrupts cell migration via the inhibition of RAC1 and CDC42 

GTPase activity (106). Both of these GTPases have been shown to regulate cell 

motility and the actin cytoskeleton (153). Interestingly, in our studies, the trend of 

downregulation of cell migration and invasion following RICTOR abrogation was 

observed specifically in RICTOR amplified cell lines that also carried concomitant 

KRAS mutations (H23, H2009, and H1792). We did not observe this trend in RICTOR 

amplified but KRAS wildtype cell lines (H2172, H2126). KRAS has been previously 

linked to regulating migration and invasion in various cancer types. Specifically, 

mutant KRAS has been shown to promote invasion and metastasis in pancreatic 

cancer through regulation of GTPase pathways involving RhoGAP5, RalA, and CAV-1 

(154). Additionally, Sunaga et al. showed that oncogenic KRAS in NSCLC induces 

interleukin-8 overexpression to promote cell migration (155). Although the mechanism 

underlying the role of RICTOR, specifically in the context of mutant KRAS, in 

regulating migration and invasion was outside of the scope of this project, it would be 

interesting to show which, if any, of these previously reported mechanisms occur in 

our cell types, and whether mutant KRAS has a direct involvement in mediating these 

phenotypes in our cell types. 

Furthermore, to better understand the phenotypic consequences described 

thus far, we wanted to evaluate if RICTOR affects cell proliferation. From our 
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experimental results, we found that silencing RICTOR in our amplified cell lines 

resulted in a significant reduction in cell number over time. Also, we found that there 

was a slight increase in G0/G1 cell cycle arrest as seen in our FACS cell cycle 

experiments. Western blotting analysis further confirmed that there was a decrease of 

cyclin D1 levels following RICTOR knockdown in the H23 cell line tested. Other 

studies have linked the regulatory effects of RICTOR/mTORC2 to cell cycle 

progression. For instance, depletion of RICTOR resulted in increased G1 phase arrest 

caused by downregulation of cyclin D1, resulting in reduced proliferation and 

anchorage-independent growth in pancreatic and breast cancer cell lines (115). In 

agreement, a similar link was described in melanoma cells overexpressed with 

RICTOR which led to increased proliferation, colony formation, and cyclin D1 

expression (127). Similarly, in hepatocellular carcinoma cells, targeted inhibition of 

RICTOR, but not RAPTOR, promoted G0/G1 cell cycle arrest and was explained by 

the reduced phosphorylation of p-AKT S473 levels, suggesting that hydrophobic motif 

phosphorylation of AKT may be required for the maintenance of cyclin D1 expression 

(129). There could be various mechanisms by which RICTOR’s effects on cell cycle 

progression are mediated. One mechanistic basis of the reduction of cyclin D1 was 

shown in a study that pinpointed to the inhibition of mTORC2 triggering a proteasome-

mediated cyclin D1 degradation via a GSK3-dependent manner, and suggested that 

specifically RICTOR, as part of mTORC2, is responsible for increasing the stability of 

cyclin D1 (128). This study further highlighted that although AKT is known to positively 

regulate cyclin D1 stability through the negative phosphorylation and inactivation of 

GSK3 (156), the reduced levels of cyclin D1 are independent of AKT. Other studies 

have reported that mTORC2 targeting suppresses cyclin D1 translation by inhibiting 
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the recruitment of cyclin D1 mRNA to polysomes in certain leukemia cells (157, 158), 

since the downstream AKT/mTORC1 translational repressor, 4E-BP1, is known to be 

involved in the regulation of cap-dependent mRNA translation and can also be 

deactivated upon mTORC2 inhibition (29, 159). However, further investigation is 

needed to precisely decipher the relationship between RICTOR/mTORC2, AKT, and 

4E-BP1 in cell cycle progression. 

The consequences of RICTOR inhibition from our studies clearly highlighted 

the significance of this oncogene in the context of NSCLC. We next wanted to 

characterize the cell signaling patterns associated with RICTOR in our cell line panel. 

Our findings demonstrated that exclusively in KRAS co-mutational backgrounds, 

knockdown of RICTOR resulted in a compensatory increased activation of 

phosphorylated MEK1/2 levels compared to controls. We further discovered that this 

compensation occurs in both RICTOR amplified and non-amplified settings, 

suggesting that regardless of the increased expression of RICTOR in amplified cells, 

there is an important interplay between RICTOR and mutant KRAS in mediating 

crosstalk mechanisms between the mTOR/AKT and RAS/MEK pathways. Our in vitro 

work further uncovered that when we perform concomitant knockdown of RICTOR 

and KRAS, there is no increase in p-MEK levels, suggesting that mutant KRAS is 

required for this compensatory mechanism to occur.  

To further define a potential mechanism mediating this crosstalk between these 

two parallel oncogenic pathways, we tested the hypothesis that the compensatory 

activation of p-MEK1/2 following RICTOR blockade is mediated through the de-

repression of the inhibitory CRAF S259 phosphorylation as a result of decreased 

activation of AKT, leading to a more active CRAF involved in transduction of mutant 
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KRAS signaling. Previous reports have identified this negative crosstalk mechanism 

between AKT and CRAF in certain cellular contexts (49, 54, 55). In our tested H23 

cell line, we found that genetic inhibition of RICTOR decreased p-AKT levels and as a 

result, reduced the phosphorylation of CRAF S259, suggestive of increased CRAF 

activity. When we tested the mTORC1 inhibitor everolimus, we did not find a 

significant reduction in the phosphorylation levels of CRAF, in line with the displayed 

elevated p-AKT levels, and in agreement with previously described AKT feedback 

loops following mTORC1 inhibition (130, 131). When we combined siRICTOR in 

combination with everolimus, there was a similar reduction of p-CRAF S259 levels as 

siRICTOR alone, displaying the lack of mTORC1 contribution to this crosstalk 

mechanism. Interestingly, treatment with our dual mTORC1/2 inhibitor, AZD2014, had 

only a slight effect on decreasing the inhibitory p-CRAF levels, despite having a 

pronounced reduction in p-AKT levels. These data suggest that RICTOR may have a 

unique interplay with AKT in mediating the CRAF cross-talk activity, independent of 

mTORC1 and mTORC2. Similar to our finding, a study by Das et al. showed that 

RICTOR ablation enhanced the phosphorylation of MEK, ERK, and also increased the 

CRAF kinase activity in glioma cells (152). In further support of the preliminary 

evidence shown here, there have been several reports signifying the importance of 

CRAF in the context of mutant KRAS. For example, in KRAS-driven NSCLC, CRAF, 

rather than BRAF, was determined to be the critical effector in mediating KRAS 

signaling (160). Similarly, Karreth et al. has shown that KRASG12D mutations elicit their 

oncogenic effects primarily through CRAF in a lung cancer mouse model, whereas 

BRAF is dispensable (161). Voice et al. has shown that of all the human RAS 

homologs tested, KRAS was revealed to be the most significant activator of CRAF in 
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vivo (162). In line with this, Lito et al. showed convincing evidence that in KRAS 

mutant tumors, effective MEK inhibition (and essentially MAPK pathway 

downregulation) requires the disruption of CRAF mediated MEK activation (163). 

Taken together, although our preliminary mechanistic findings here suggest a 

possible link between RICTOR/AKT-mediated regulations of CRAF activity in a KRAS 

mutant setting, further investigation is warranted. For example, it would be interesting 

to study the effects of genetic or targeted inhibition of AKT in this setting to 

conclusively confirm this negative crosstalk. Furthermore, it would be important to 

perform immunoprecipitation experiments to see if RICTOR, AKT, and/or CRAF 

directly bind in this particular cell line, and whether other mTORC2 components are 

involved. This will elucidate whether RICTOR is acting upon AKT independently of 

mTORC2 in this cell type, as prior studies have shown this to be a possibility (108, 

109). Lastly, since this experiment was performed in one cell line (H23, RICTOR 

amplified, KRAS/STK11/PTEN mutant), it would be imperative to expand this study in 

other cell lines, particularly those that do not possess RICTOR amplification and/or 

the other listed co-mutations. This would shed light as to which specific genomic 

landscape the crosstalk occurs in, as it is well established that the complex 

heterogeneity of even cell lines results in differential signaling mechanisms.  

As we continued to explore the cell signaling effects mediated by RICTOR in 

our RICTOR amplified cell lines, we performed a phospho-MAPK proteomic array on 

our H23 cell line to compare siRICTOR versus control cells. We found that RICTOR 

inhibition decreased the phosphorylation and activation levels of p38α, CREB, and 

HSP27. Interestingly, these kinases have broad roles in mediating cellular stress 

response, survival, and/or proliferation, in which some of the signaling pathways and 
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functionalities overlap, especially since these kinases can, in fact, regulate one 

another (47, 134). Notably, the most significant difference in phosphorylation was 

seen in p38α, which has been reported to have both tumor suppressive and 

oncogenic roles, depending on the cellular context. Although some reports have 

shown prosurvival functionalities, many others have associated this kinase with the 

induction of apoptosis during cellular stress (47). Another report confirmed similar 

results as ours, showing that in mice in which RICTOR is conditionally knocked out in 

the liver, phospho-proteomic profiling identified a significant reduction in the p38 

MAPK levels in vivo (164). In connection to our abovementioned cyclin D1 

downregulation and slight increase in cell cycle arrest after RICTOR inhibition, p38 

has been shown to negatively regulate cell cycle progression by inducing a G1/S 

checkpoint in response to osmotic stress, reactive oxygen species, and cell 

senescence stimuli (136). Specifically, p38 has been connected with reducing the 

levels of cyclin D1 either through an indirect transcriptional repression mechanism 

(165, 166), or through direct phosphorylation of cyclin D1, resulting in ubiquitination 

and proteosomal degradation (135). These data suggest that there could be a link 

between RICTOR and p38α in modulating the cell cycle progression and cellular 

stress response in the NSCLC cell lines tested. Accordingly, accumulating evidence 

has shown that RICTOR/mTORC2 is linked to the regulation of metabolic stress, 

inflammatory response, and energy balance in various contexts (167-170). 

Furthermore, it is interesting to note that since we determined a compensatory 

activation of p-MEK following RICTOR inhibition, it is plausible that this activated MEK 

could bypass ERK and interact with p38α to mediate alternate survival pathways such 

as autophagy. A study by Wang et al. demonstrated that MEK may play a more 
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important role by bypassing ERK and regulating BECLIN-1 expression to induce 

autophagy, emphasizing a non-canonical MEK-ERK signaling pathway (171). In line 

with this assumption, genetic ablation or targeted inhibition of p38α was shown to 

cause cell cycle arrest and autophagic cell death in colorectal cancer cells (172). A 

more detailed mechanistic study assessing various markers of autophagy, 

senescence, proliferation, and/or apoptosis is needed to fully ascertain the 

mechanism by which we see a reduction in colony formation, cell counts, and 

tumorigenicity following RICTOR inhibition in our pre-clinical NSCLC models. 

The PI3K/AKT/mTOR and RAS/RAF/MEK/ERK signaling pathways are critical 

integrators of mechanisms mediating cell survival, proliferation, differentiation, 

metabolism, and invasion/migration in response to extracellular stimuli. Various 

targeted therapies have been developed directed at each of these major oncogenic 

pathways (173, 174). However, it is now clear that monotherapeutic targeting of 

effectors of these pathways result in resistance mechanisms such as re-activation of 

feedback loops and cross-talk mechanisms. Thus, these acquired bypass 

mechanisms are to blame for the lack of therapeutic efficacy and relapse often seen 

in patients, and therefore prompt the use of combinatorial therapeutic strategies. Our 

in vitro and in vivo data suggest that RICTOR blockade results in a compensatory 

activation of the MAPK pathway, specifically in KRAS co-mutational settings. We 

show that in both RICTOR amplified and non-amplified NSCLC cell lines, RICTOR 

knockdown increases p-MEK levels only when the cells harbor KRAS mutations. This 

is important as mutations in KRAS have been identified in 20-30% of lung cancers 

and are known to serve as crucial drivers of this malignancy, leading to poorer 

prognosis and resistance to chemo- and targeted therapies, yet KRAS still remains an 
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orphan target in NSCLC and other tumors (3, 175). To date, direct targeting of 

aberrant KRAS activation has been unsuccessful despite significant research efforts 

(176). We exploited this resistance mechanism as a therapeutic vulnerability and 

therefore tested a dual pathway inhibition approach by use of a catalytic mTORC1/2 

inhibitor (AZD2014) and allosteric MEK1/2 inhibitor (selumetinib). Our results suggest 

this combination renders a highly synergistic anti-tumor effect in our RICTOR/KRAS-

altered NSCLC cell lines both in vitro and in vivo.  

Combination strategies with other inhibitors targeting both pathways have been 

proposed and reported, but with varying efficacy and in differing genomic subsets. A 

study by Meng et al. found that combining selumetinib with an AKT inhibitor (MK2206) 

had a significant synergistic effect on tumor growth in vitro and in vivo in NSCLC 

(177). However, they found no correlation between mutational status of KRAS, EGFR, 

BRAF, or PI3K to sensitivity to either drug. Moreover, a study reported that activation 

of the PI3K pathway strongly influences sensitivity to MEK inhibition in RAS mutant 

cells, and thus suggest a combination therapy of PI3K and MEK inhibitors for tumors 

with concomitant mutations of KRAS and PIK3CA (178). However, the role of 

RICTOR in PI3K co-mutational settings is yet to be determined.  

Similar to our proposed strategy, a recent in vitro study signified the rationale of 

combined inhibition of MEK and mTOR signaling in KRAS mutant NSCLC (179). They 

assessed a panel of EGFR/ALK wildtype NSCLC cell lines that are either KRAS 

mutant or wildtype, and have shown that inhibition of mTOR is dominantly responsible 

for the majority of growth inhibition in the combination therapy of mTORC1/2 inhibitor 

(AZD2014) with MEK1/2 inhibitor (trametinib), and the combination is more effective in 

KRAS mutant lines. Interestingly, our in vitro data testing selumetinib and AZD2014 in 
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KRAS mutant cells did not define a clear dominant trend between which drug has the 

more potent effect on cell viability, perhaps due to the diverse co-mutational nature of 

the RICTOR cell line panel. This could also be due to the differences in the MEK 

inhibitor used (selumetinib vs. trametinib), which are known to have differing 

mechanisms of action. Additionally, our in vivo data using the H1792 xenograft model 

actually showed that selumetinib had a more enhanced anti-tumor effect as a single 

agent compared to the mTORC1/2 inhibitor AZD2014, suggesting that this particular 

KRAS mutant cell line (KRASG12C) is more sensitive to MEK1/2 inhibition than 

mTORC1/2, despite having amplification of RICTOR present. 

Nevertheless, these reports and others underscore the combinatorial rational of 

dual pathway inhibition presented here. It would be of interest to elucidate, however, 

whether the development of specific pharmacologic targeting of RICTOR would prove 

beneficial in defined patient populations, namely in RICTOR amplified cases, 

exclusive of other major driver mutations. This would prove beneficial considering that 

RICTOR is known to function independently of the mTORC2 complex, regulating 

other effectors involved in tumor progression. However, in the patient cohort that we 

are targeting here, we believe that dual mTORC1/2 inhibitors, such as AZD2014, are 

still warranted further clinical testing in combination with MEK inhibitors, such as 

selumetinib, as this approach prevents the compensatory feedback we described in 

our study, and other mechanisms often seen by single mTORC1 inhibitors known to 

induce hyperactivation of PI3K-AKT (180). Moreover, although previous reports 

suggest limited clinical benefits from mTORC1/2 inhibitors, proper patient selection in 

lung cancer patients is needed to fully exploit this therapeutic option (181). Lastly, 

although combination therapy might be highly effective in cancer patients, there are 
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great limitations in regards to toxicity. In our proposed strategy specifically, the mTOR 

and MAPK signaling pathways regulate important physiological functions in non-

malignant cells, and thus, an extended treatment setting targeting both pathways 

might not be feasible. It is therefore important to assess various dosing strategies 

(e.g. intermittent versus continuous treatment) to fully define the maximal tolerated 

frequency/doses with the lowest toxicity profile. 

In conclusion, our study uncovers defined molecular settings by which we 

believe can impose clinical benefit to KRAS mutant NSCLC by screening for 

concomitant RICTOR alterations that will determine potential benefit from dual 

mTOR/MAPK pathway inhibition. Excitingly, an ongoing clinical trial termed 

“TORCMEK” (NCT02583542) is recruiting patients with advanced cancers, including 

triple-negative breast cancer and NSCLC (KRAS mutant vs. wild-type tumors), to 

assess feasible dose levels and clinical activity of combining AZD2014 in combination 

with selumetinib. Despite that these targeting agents have been utilized in other 

clinical trials as single agents or in combination with alternative drugs, this specific 

combination has not been tested in the clinical setting. On the basis of our studies, it 

would be of interest to identify if any potential responders to this combination 

harbored RICTOR and/or KRAS alterations. 
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